本文整理匯總了Python中tensorflow.compat.v1.less_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.less_equal方法的具體用法?Python v1.less_equal怎麽用?Python v1.less_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.less_equal方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pad_to_fixed_size
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def pad_to_fixed_size(data, pad_value, output_shape):
"""Pad data to a fixed length at the first dimension.
Args:
data: Tensor to be padded to output_shape.
pad_value: A constant value assigned to the paddings.
output_shape: The output shape of a 2D tensor.
Returns:
The Padded tensor with output_shape [max_num_instances, dimension].
"""
max_num_instances = output_shape[0]
dimension = output_shape[1]
data = tf.reshape(data, [-1, dimension])
num_instances = tf.shape(data)[0]
assert_length = tf.Assert(
tf.less_equal(num_instances, max_num_instances), [num_instances])
with tf.control_dependencies([assert_length]):
pad_length = max_num_instances - num_instances
paddings = pad_value * tf.ones([pad_length, dimension])
padded_data = tf.concat([data, paddings], axis=0)
padded_data = tf.reshape(padded_data, output_shape)
return padded_data
示例2: assert_box_normalized
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
"""Asserts the input box tensor is normalized.
Args:
boxes: a tensor of shape [N, 4] where N is the number of boxes.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.1.
Returns:
a tf.Assert op which fails when the input box tensor is not normalized.
Raises:
ValueError: When the input box tensor is not normalized.
"""
box_minimum = tf.reduce_min(boxes)
box_maximum = tf.reduce_max(boxes)
return tf.Assert(
tf.logical_and(
tf.less_equal(box_maximum, maximum_normalized_coordinate),
tf.greater_equal(box_minimum, 0)),
[boxes])
示例3: test_assert_true
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def test_assert_true():
g = tf.Graph()
shape = (1, 2)
with g.as_default():
x = tf.placeholder(tf.float32, shape=shape, name="input")
assert_op = tf.Assert(tf.reduce_all(tf.less_equal(x, x)), ["it failed"])
with tf.Session() as sess:
x_value = np.random.rand(*shape)
assert sess.run(assert_op, feed_dict={x: x_value}) is None
# In TVM, tf.assert is converted to a no-op which is actually a 0,
# though it should probably be none or an empty tuple.
#
# ToDo: It appears that the frontend converter gets confused here and
# entirely eliminates all operands from main(). Likely because x <= x
# is always true, so the placeholder can be eliminated. But TF doesn't
# do that, it's happening in Relay, and that optimization shouldn't
# affect the arity of the main function. We should have to pass in
# x_value here.
np.testing.assert_allclose(0, run_relay(g, {'input': shape}).asnumpy())
示例4: test_assert_true_var_capture
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def test_assert_true_var_capture():
g = tf.Graph()
with g.as_default():
x = tf.placeholder(tf.float32, shape=())
# It turns out that tf.assert() creates a large and complex subgraph if
# you capture a variable as part of the error message. So we need to
# test that, too.
assert_op = tf.Assert(tf.less_equal(x, x), ["it failed", x])
with tf.Session() as sess:
x_value = np.random.rand()
assert sess.run(assert_op, feed_dict={x: x_value}) is None
# TODO: The frontend converter notes the output of
# the graph as a boolean, which is not correct - as you can see above,
# TF believes that the value of this graph is None.
np.testing.assert_allclose(True,
run_relay(g, None, x_value).asnumpy())
示例5: cumsum
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def cumsum(x, axis=0, exclusive=False):
"""TPU hack for tf.cumsum.
This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless
the axis dimension is very large.
Args:
x: a Tensor
axis: an integer
exclusive: a boolean
Returns:
Tensor of the same shape as x.
"""
if not is_xla_compiled():
return tf.cumsum(x, axis=axis, exclusive=exclusive)
x_shape = shape_list(x)
rank = len(x_shape)
length = x_shape[axis]
my_range = tf.range(length)
comparator = tf.less if exclusive else tf.less_equal
mask = tf.cast(
comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
x.dtype)
ret = tf.tensordot(x, mask, axes=[[axis], [0]])
if axis != rank - 1:
ret = tf.transpose(
ret,
list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
return ret
示例6: sample_with_temperature
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def sample_with_temperature(logits, temperature, sampling_keep_top_k=-1):
"""Either argmax or random sampling.
Args:
logits: a Tensor.
temperature: a float 0.0=argmax 1.0=random
sampling_keep_top_k: If not -1, only sample from the top k logits.
Returns:
a Tensor with one fewer dimension than logits.
"""
if temperature == 0.0:
# TF argmax doesn't handle >5 dimensions, so we reshape here.
logits_shape = shape_list(logits)
argmax = tf.argmax(tf.reshape(logits, [-1, logits_shape[-1]]), axis=1)
return tf.reshape(argmax, logits_shape[:-1])
else:
tf.debugging.assert_greater(temperature, 0.0)
if sampling_keep_top_k != -1:
if sampling_keep_top_k <= 0:
raise ValueError("sampling_keep_top_k must either be -1 or positive.")
vocab_size = shape_list(logits)[1]
k_largest = contrib.nn().nth_element(
logits, n=sampling_keep_top_k, reverse=True)
k_largest = tf.tile(tf.reshape(k_largest, [-1, 1]), [1, vocab_size])
# Force every position that is not in the top k to have probability near
# 0 by setting the logit to be very negative.
logits = tf.where(tf.less_equal(logits, k_largest),
tf.ones_like(logits)*-1e6, logits)
reshaped_logits = (
tf.reshape(logits, [-1, shape_list(logits)[-1]]) / temperature)
choices = tf.multinomial(reshaped_logits, 1)
choices = tf.reshape(choices,
shape_list(logits)[:logits.get_shape().ndims - 1])
return choices
示例7: prune_completely_outside_window
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def prune_completely_outside_window(boxlist, window, scope=None):
"""Prunes bounding boxes that fall completely outside of the given window.
The function clip_to_window prunes bounding boxes that fall
completely outside the window, but also clips any bounding boxes that
partially overflow. This function does not clip partially overflowing boxes.
Args:
boxlist: a BoxList holding M_in boxes.
window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
of the window
scope: name scope.
Returns:
pruned_boxlist: a new BoxList with all bounding boxes partially or fully in
the window.
valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
in the input tensor.
"""
with tf.name_scope(scope, 'PruneCompleteleyOutsideWindow'):
y_min, x_min, y_max, x_max = tf.split(
value=boxlist.get(), num_or_size_splits=4, axis=1)
win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
coordinate_violations = tf.concat([
tf.greater_equal(y_min, win_y_max), tf.greater_equal(x_min, win_x_max),
tf.less_equal(y_max, win_y_min), tf.less_equal(x_max, win_x_min)
], 1)
valid_indices = tf.reshape(
tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
return gather(boxlist, valid_indices), valid_indices
示例8: testRandomPixelValueScale
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def testRandomPixelValueScale(self):
def graph_fn():
preprocessing_options = []
preprocessing_options.append((preprocessor.normalize_image, {
'original_minval': 0,
'original_maxval': 255,
'target_minval': 0,
'target_maxval': 1
}))
preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
images = self.createTestImages()
tensor_dict = {fields.InputDataFields.image: images}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
images_min = tf.cast(images, dtype=tf.float32) * 0.9 / 255.0
images_max = tf.cast(images, dtype=tf.float32) * 1.1 / 255.0
images = tensor_dict[fields.InputDataFields.image]
values_greater = tf.greater_equal(images, images_min)
values_less = tf.less_equal(images, images_max)
values_true = tf.fill([1, 4, 4, 3], True)
return [values_greater, values_less, values_true]
(values_greater_, values_less_,
values_true_) = self.execute_cpu(graph_fn, [])
self.assertAllClose(values_greater_, values_true_)
self.assertAllClose(values_less_, values_true_)
示例9: provide_dataset
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def provide_dataset(self):
"""Provides dataset (audio, labels) of nsynth."""
length = 64000
channels = 1
pitch_counts = self.get_pitch_counts()
pitches = sorted(pitch_counts.keys())
label_index_table = tf.lookup.StaticVocabularyTable(
tf.lookup.KeyValueTensorInitializer(
keys=pitches,
values=np.arange(len(pitches)),
key_dtype=tf.int64,
value_dtype=tf.int64),
num_oov_buckets=1)
def _parse_nsynth(record):
"""Parsing function for NSynth dataset."""
features = {
'pitch': tf.FixedLenFeature([1], dtype=tf.int64),
'audio': tf.FixedLenFeature([length], dtype=tf.float32),
'qualities': tf.FixedLenFeature([10], dtype=tf.int64),
'instrument_source': tf.FixedLenFeature([1], dtype=tf.int64),
'instrument_family': tf.FixedLenFeature([1], dtype=tf.int64),
}
example = tf.parse_single_example(record, features)
wave, label = example['audio'], example['pitch']
wave = spectral_ops.crop_or_pad(wave[tf.newaxis, :, tf.newaxis],
length,
channels)[0]
one_hot_label = tf.one_hot(
label_index_table.lookup(label), depth=len(pitches))[0]
return wave, one_hot_label, label, example['instrument_source']
dataset = self._get_dataset_from_path()
dataset = dataset.map(_parse_nsynth, num_parallel_calls=4)
# Filter just acoustic instruments (as in the paper)
# (0=acoustic, 1=electronic, 2=synthetic)
dataset = dataset.filter(lambda w, l, p, s: tf.equal(s, 0)[0])
# Filter just pitches 24-84
dataset = dataset.filter(lambda w, l, p, s: tf.greater_equal(p, 24)[0])
dataset = dataset.filter(lambda w, l, p, s: tf.less_equal(p, 84)[0])
dataset = dataset.map(lambda w, l, p, s: (w, l))
return dataset
示例10: packed_parallel_tsv_dataset
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def packed_parallel_tsv_dataset(dataset=gin.REQUIRED,
dataset_split=gin.REQUIRED,
batch_size=None,
sequence_length=gin.REQUIRED,
vocabulary=gin.REQUIRED,
append_eos=True,
eos_id=1,
max_encoded_len=0):
"""Reads parallel tab-separated text file. One example per line."""
del batch_size
del dataset_split
def _parse_fn(record): # pylint: disable=missing-docstring
tokens = tf.decode_csv(
record,
record_defaults=[""] * 2,
field_delim="\t",
use_quote_delim=False)
return {"inputs": tokens[0], "targets": tokens[1]}
def _encode_fn(features): # pylint: disable=missing-docstring
inputs_vocabulary = vocabulary[0] if isinstance(vocabulary,
tuple) else vocabulary
targets_vocabulary = vocabulary[1] if isinstance(vocabulary,
tuple) else vocabulary
inputs_enc = inputs_vocabulary.encode_tf(features["inputs"])
targets_enc = targets_vocabulary.encode_tf(features["targets"])
if append_eos:
inputs_enc = tf.concat([tf.cast(inputs_enc, tf.int64), [eos_id]], 0)
targets_enc = tf.concat([tf.cast(targets_enc, tf.int64), [eos_id]], 0)
return {"inputs": inputs_enc, "targets": targets_enc}
dataset = dataset.map(
_parse_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.map(
_encode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _filter_fn(features): # pylint: disable=missing-docstring
return tf.less_equal(
tf.reduce_max(
tf.stack([tf.size(v) for v in features.values()], axis=0)),
max_encoded_len)
if max_encoded_len:
tf.logging.info("Filtering encoded examples longer than %d" %
max_encoded_len)
dataset = dataset.filter(_filter_fn)
return pack_or_pad(dataset, sequence_length)
示例11: _subsample_selection_to_desired_neg_pos_ratio
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import less_equal [as 別名]
def _subsample_selection_to_desired_neg_pos_ratio(self,
indices,
match,
max_negatives_per_positive,
min_negatives_per_image=0):
"""Subsample a collection of selected indices to a desired neg:pos ratio.
This function takes a subset of M indices (indexing into a large anchor
collection of N anchors where M<N) which are labeled as positive/negative
via a Match object (matched indices are positive, unmatched indices
are negative). It returns a subset of the provided indices retaining all
positives as well as up to the first K negatives, where:
K=floor(num_negative_per_positive * num_positives).
For example, if indices=[2, 4, 5, 7, 9, 10] (indexing into 12 anchors),
with positives=[2, 5] and negatives=[4, 7, 9, 10] and
num_negatives_per_positive=1, then the returned subset of indices
is [2, 4, 5, 7].
Args:
indices: An integer tensor of shape [M] representing a collection
of selected anchor indices
match: A matcher.Match object encoding the match between anchors and
groundtruth boxes for a given image, with rows of the Match objects
corresponding to groundtruth boxes and columns corresponding to anchors.
max_negatives_per_positive: (float) maximum number of negatives for
each positive anchor.
min_negatives_per_image: minimum number of negative anchors for a given
image. Allow sampling negatives in image without any positive anchors.
Returns:
selected_indices: An integer tensor of shape [M'] representing a
collection of selected anchor indices with M' <= M.
num_positives: An integer tensor representing the number of positive
examples in selected set of indices.
num_negatives: An integer tensor representing the number of negative
examples in selected set of indices.
"""
positives_indicator = tf.gather(match.matched_column_indicator(), indices)
negatives_indicator = tf.gather(match.unmatched_column_indicator(), indices)
num_positives = tf.reduce_sum(tf.cast(positives_indicator, dtype=tf.int32))
max_negatives = tf.maximum(
min_negatives_per_image,
tf.cast(max_negatives_per_positive *
tf.cast(num_positives, dtype=tf.float32), dtype=tf.int32))
topk_negatives_indicator = tf.less_equal(
tf.cumsum(tf.cast(negatives_indicator, dtype=tf.int32)), max_negatives)
subsampled_selection_indices = tf.where(
tf.logical_or(positives_indicator, topk_negatives_indicator))
num_negatives = tf.size(subsampled_selection_indices) - num_positives
return (tf.reshape(tf.gather(indices, subsampled_selection_indices), [-1]),
num_positives, num_negatives)