本文整理匯總了Python中tensorflow.compat.v1.import_graph_def方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.import_graph_def方法的具體用法?Python v1.import_graph_def怎麽用?Python v1.import_graph_def使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.import_graph_def方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _load_frozen_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def _load_frozen_graph(self, frozen_graph_path):
frozen_graph = tf.GraphDef()
with open(frozen_graph_path, 'rb') as f:
frozen_graph.ParseFromString(f.read())
self.graph = tf.Graph()
with self.graph.as_default():
self.output_node = tf.import_graph_def(
frozen_graph, return_elements=[
'probabilities:0',
])
self.session = tf.InteractiveSession(graph=self.graph)
tf_probabilities = self.graph.get_tensor_by_name('import/probabilities:0')
self._output_nodes = [tf_probabilities]
self.sliding_window = None
self.frames_since_last_inference = self.config.inference_rate
self.last_annotations = []
示例2: load
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def load(self, saved_model_dir_or_frozen_graph: Text):
"""Load the model using saved model or a frozen graph."""
if not self.sess:
self.sess = self._build_session()
self.signitures = {
'image_files': 'image_files:0',
'image_arrays': 'image_arrays:0',
'prediction': 'detections:0',
}
# Load saved model if it is a folder.
if tf.io.gfile.isdir(saved_model_dir_or_frozen_graph):
return tf.saved_model.load(self.sess, ['serve'],
saved_model_dir_or_frozen_graph)
# Load a frozen graph.
graph_def = tf.GraphDef()
with tf.gfile.GFile(saved_model_dir_or_frozen_graph, 'rb') as f:
graph_def.ParseFromString(f.read())
return tf.import_graph_def(graph_def, name='')
示例3: create_model_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def create_model_graph(model_info):
""""Creates a graph from saved GraphDef file and returns a Graph object.
Args:
model_info: Dictionary containing information about the model architecture.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Graph().as_default() as graph:
model_path = os.path.join(FLAGS.model_dir, model_info['model_file_name'])
with gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(
graph_def,
name='',
return_elements=[
model_info['bottleneck_tensor_name'],
model_info['resized_input_tensor_name'],
]))
return graph, bottleneck_tensor, resized_input_tensor
示例4: _import_graph_and_run_inference
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def _import_graph_and_run_inference(self, tflite_graph_file, num_channels=3):
"""Imports a tflite graph, runs single inference and returns outputs."""
graph = tf.Graph()
with graph.as_default():
graph_def = tf.GraphDef()
with tf.gfile.Open(tflite_graph_file, mode='rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
input_tensor = graph.get_tensor_by_name('normalized_input_image_tensor:0')
box_encodings = graph.get_tensor_by_name('raw_outputs/box_encodings:0')
class_predictions = graph.get_tensor_by_name(
'raw_outputs/class_predictions:0')
with self.test_session(graph) as sess:
[box_encodings_np, class_predictions_np] = sess.run(
[box_encodings, class_predictions],
feed_dict={input_tensor: np.random.rand(1, 10, 10, num_channels)})
return box_encodings_np, class_predictions_np
示例5: initialize
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def initialize():
print('Loading model...',end=''),
with tf.gfile.FastGFile(filename, 'rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
print('Success!')
print('Loading labels...', end='')
with open(labels_filename, 'rt') as lf:
for l in lf:
l = l[:-1]
labels.append(l)
print(len(labels), 'found. Success!')
示例6: _load_frozen_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def _load_frozen_graph(self, frozen_graph_path):
trt_graph = tf.GraphDef()
with open(frozen_graph_path, 'rb') as f:
trt_graph.ParseFromString(f.read())
self._is_lstm = self._check_lstm(trt_graph)
if self._is_lstm:
print('Loading an LSTM model.')
self.graph = tf.Graph()
with self.graph.as_default():
self.output_node = tf.import_graph_def(
trt_graph,
return_elements=[
'detection_boxes:0', 'detection_classes:0', 'detection_scores:0',
'num_detections:0'
] + (['raw_outputs/lstm_c:0', 'raw_outputs/lstm_h:0']
if self._is_lstm else []))
self.session = tf.InteractiveSession(graph=self.graph)
tf_scores = self.graph.get_tensor_by_name('import/detection_scores:0')
tf_boxes = self.graph.get_tensor_by_name('import/detection_boxes:0')
tf_classes = self.graph.get_tensor_by_name('import/detection_classes:0')
tf_num_detections = self.graph.get_tensor_by_name('import/num_detections:0')
if self._is_lstm:
tf_lstm_c = self.graph.get_tensor_by_name('import/raw_outputs/lstm_c:0')
tf_lstm_h = self.graph.get_tensor_by_name('import/raw_outputs/lstm_h:0')
self._output_nodes = [tf_scores, tf_boxes, tf_classes, tf_num_detections
] + ([tf_lstm_c, tf_lstm_h] if self._is_lstm else [])
if self._is_lstm:
self.lstm_c = np.ones((1, 8, 8, 320))
self.lstm_h = np.ones((1, 8, 8, 320))
示例7: create_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
開發者ID:PacktPublishing,項目名稱:Deep-Learning-with-TensorFlow-Second-Edition,代碼行數:10,代碼來源:classify_image.py
示例8: load_frozen_model
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def load_frozen_model(pb_path, prefix='', print_nodes=False):
"""Load frozen model (.pb file) for testing.
After restoring the model, operators can be accessed by
graph.get_tensor_by_name('<prefix>/<op_name>')
Args:
pb_path: the path of frozen model.
prefix: prefix added to the operator name.
print_nodes: whether to print node names.
Returns:
graph: tensorflow graph definition.
"""
if os.path.exists(pb_path):
#with tf.gfile.GFile(pb_path, "rb") as f:
with tf.io.gfile.GFile(pb_path, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
name=prefix
)
if print_nodes:
for op in graph.get_operations():
print(op.name)
return graph
else:
print('Model file does not exist', pb_path)
exit(-1)
示例9: load_frozen_model
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def load_frozen_model(pb_path, prefix='', print_nodes=False):
"""Load frozen model (.pb file) for testing.
After restoring the model, operators can be accessed by
graph.get_tensor_by_name('<prefix>/<op_name>')
Args:
pb_path: the path of frozen model.
prefix: prefix added to the operator name.
print_nodes: whether to print node names.
Returns:
graph: tensorflow graph definition.
"""
if os.path.exists(pb_path):
with tf.io.gfile.GFile(pb_path, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
name=prefix
)
if print_nodes:
for op in graph.get_operations():
print(op.name)
return graph
else:
print('Model file does not exist', pb_path)
exit(-1)
示例10: test_dropout_trans_1_1
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def test_dropout_trans_1_1(droput_graph_tuple):
(graph_def,
(rate_name, dropout_output_name),
output_nodes) = droput_graph_tuple
ugraph = GraphDefParser(config={}).parse(graph_def, output_nodes=output_nodes)
transformer = DropoutTransformer()
assert transformer.prune_graph
new_ugraph = transformer.transform(ugraph)
for op in new_ugraph.ops_info.values():
assert op.ugraph
out_op = new_ugraph.ops_info[output_nodes[0]]
assert set([str(op.name) for op in out_op.input_nodes]) == set(['x', 'bias'])
# all dropout nodes should be gone
graph_1 = tf.Graph()
graph_2 = tf.Graph()
with graph_1.as_default():
tf.import_graph_def(ugraph.graph_def, name='')
with graph_2.as_default():
tf.import_graph_def(new_ugraph.graph_def, name='')
with tf.Session(graph=graph_1):
rate = graph_1.get_tensor_by_name(rate_name)
dropout_output = graph_1.get_tensor_by_name(dropout_output_name)
output = graph_1.get_tensor_by_name(output_nodes[0]+":0")
# test the dropout ops are gone
assert rate.op.name not in new_ugraph.ops_info
assert dropout_output.op.name not in new_ugraph.ops_info
output_1 = output.eval({rate: 0.0})
with tf.Session(graph=graph_2):
output = graph_2.get_tensor_by_name(output_nodes[0]+":0")
output_2 = output.eval()
# expecting the same outputs with keep_prob == 1.0
assert (output_1 == output_2).all()
示例11: test_dropout_trans_1_2
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def test_dropout_trans_1_2(droput_graph_tuple):
(graph_def,
(keep_prob_name, dropout_output_name),
output_nodes) = droput_graph_tuple
ugraph = GraphDefParser(config={}).parse(graph_def, output_nodes=output_nodes)
transformer = DropoutTransformerV2()
assert transformer.prune_graph
new_ugraph = transformer.transform(ugraph)
for op in new_ugraph.ops_info.values():
assert op.ugraph
out_op = new_ugraph.ops_info[output_nodes[0]]
assert set([str(op.name) for op in out_op.input_nodes]) == set(['x', 'bias'])
# all dropout nodes should be gone
graph_1 = tf.Graph()
graph_2 = tf.Graph()
with graph_1.as_default():
tf.import_graph_def(ugraph.graph_def, name='')
with graph_2.as_default():
tf.import_graph_def(new_ugraph.graph_def, name='')
with tf.Session(graph=graph_1):
keep_prob = graph_1.get_tensor_by_name(keep_prob_name)
dropout_output = graph_1.get_tensor_by_name(dropout_output_name)
output = graph_1.get_tensor_by_name(output_nodes[0]+":0")
# test the dropout ops are gone
assert keep_prob.op.name not in new_ugraph.ops_info
assert dropout_output.op.name not in new_ugraph.ops_info
output_1 = output.eval({keep_prob:1.0})
with tf.Session(graph=graph_2):
output = graph_2.get_tensor_by_name(output_nodes[0]+":0")
output_2 = output.eval()
# expecting the same outputs with keep_prob == 1.0
assert (output_1 == output_2).all()
示例12: write_graph_and_checkpoint
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def write_graph_and_checkpoint(inference_graph_def,
model_path,
input_saver_def,
trained_checkpoint_prefix):
"""Writes the graph and the checkpoint into disk."""
for node in inference_graph_def.node:
node.device = ''
with tf.Graph().as_default():
tf.import_graph_def(inference_graph_def, name='')
with tf.Session() as sess:
saver = tf.train.Saver(
saver_def=input_saver_def, save_relative_paths=True)
saver.restore(sess, trained_checkpoint_prefix)
saver.save(sess, model_path)
示例13: _load_inference_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def _load_inference_graph(self, inference_graph_path, is_binary=True):
od_graph = tf.Graph()
with od_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(inference_graph_path, mode='rb') as fid:
if is_binary:
od_graph_def.ParseFromString(fid.read())
else:
text_format.Parse(fid.read(), od_graph_def)
tf.import_graph_def(od_graph_def, name='')
return od_graph
示例14: predict_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def predict_image(image):
print('Predicting image')
tf.reset_default_graph()
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
prob_tensor = sess.graph.get_tensor_by_name(output_layer)
input_tensor_shape = sess.graph.get_tensor_by_name('Placeholder:0').shape.as_list()
network_input_size = input_tensor_shape[1]
# w = image.shape[0]
# h = image.shape[1]
w, h = image.size
print('Image size',w,'x',h)
# scaling
if w > h:
new_size = (int((float(size[1]) / h) * w), size[1], 3)
else:
new_size = (size[0], int((float(size[0]) / w) * h), 3)
# resize
if not (new_size[0] == w and new_size[0] == h):
print('Resizing to', new_size[0],'x',new_size[1])
#augmented_image = scipy.misc.imresize(image, new_size)
augmented_image = np.asarray(image.resize((new_size[0], new_size[1])))
else:
augmented_image = np.asarray(image)
# crop center
try:
augmented_image = crop_center(augmented_image, network_input_size, network_input_size)
except:
return 'error: crop_center'
augmented_image = augmented_image.astype(float)
# RGB -> BGR
red, green, blue = tf.split(axis=2, num_or_size_splits=3, value=augmented_image)
image_normalized = tf.concat(axis=2, values=[
blue - mean_values_b_g_r[0],
green - mean_values_b_g_r[1],
red - mean_values_b_g_r[2],
])
image_normalized = image_normalized.eval()
image_normalized = np.expand_dims(image_normalized, axis=0)
predictions, = sess.run(prob_tensor, {input_node: image_normalized})
result = []
idx = 0
for p in predictions:
truncated_probablity = np.float64(round(p,8))
if (truncated_probablity > 1e-8):
result.append({'Tag': labels[idx], 'Probability': truncated_probablity })
idx += 1
print('Results: ', str(result))
return result
示例15: main
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import import_graph_def [as 別名]
def main(m_path, out_dir, light=False, test_out=True):
logger = get_logger("tf1_export", debug=test_out)
g = Generator(light=light)
t = tf.placeholder(tf.string, [])
x = tf.expand_dims(tf.image.decode_jpeg(tf.read_file(t), channels=3), 0)
x = (tf.cast(x, tf.float32) / 127.5) - 1
x = g(x, training=False)
out = tf.cast((tf.squeeze(x, 0) + 1) * 127.5, tf.uint8)
in_name, out_name = t.op.name, out.op.name
try:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
g.load_weights(tf.train.latest_checkpoint(m_path))
in_graph_def = tf.get_default_graph().as_graph_def()
out_graph_def = tf.graph_util.convert_variables_to_constants(
sess, in_graph_def, [out_name])
tf.reset_default_graph()
tf.import_graph_def(out_graph_def, name='')
except ValueError:
logger.error("Failed to load specified weight.")
logger.error("If you trained your model with --light, "
"consider adding --light when executing this script; otherwise, "
"do not add --light when executing this script.")
exit(1)
makedirs(out_dir)
m_cnt = 0
bpath = 'optimized_graph_light' if light else 'optimized_graph'
out_path = os.path.join(out_dir, f'{bpath}_{m_cnt:04d}.pb')
while os.path.exists(out_path):
m_cnt += 1
out_path = os.path.join(out_dir, f'{bpath}_{m_cnt:04d}.pb')
with tf.gfile.GFile(out_path, 'wb') as f:
f.write(out_graph_def.SerializeToString())
if test_out:
with tf.Graph().as_default():
gd = tf.GraphDef()
with tf.gfile.GFile(out_path, 'rb') as f:
gd.ParseFromString(f.read())
tf.import_graph_def(gd, name='')
tf.get_default_graph().finalize()
t = tf.get_default_graph().get_tensor_by_name(f"{in_name}:0")
out = tf.get_default_graph().get_tensor_by_name(f"{out_name}:0")
from time import time
start = time()
with tf.Session() as sess:
img = Image.fromarray(sess.run(out, {t: "input_images/temple.jpg"}))
img.show()
elapsed = time() - start
logger.debug(f"{elapsed} sec per img")
logger.info(f"successfully exported ckpt to {out_path}")
logger.info(f"input var name: {in_name}:0")
logger.info(f"output var name: {out_name}:0")