本文整理匯總了Python中tensorflow.compat.v1.greater_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.greater_equal方法的具體用法?Python v1.greater_equal怎麽用?Python v1.greater_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.greater_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _flat_reconstruction_loss
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _flat_reconstruction_loss(self, flat_x_target, flat_rnn_output):
b_enc, b_dec = tf.split(
flat_rnn_output,
[self._nade.num_hidden, self._output_depth], axis=1)
ll, cond_probs = self._nade.log_prob(
flat_x_target, b_enc=b_enc, b_dec=b_dec)
r_loss = -ll
flat_truth = tf.cast(flat_x_target, tf.bool)
flat_predictions = tf.greater_equal(cond_probs, 0.5)
metric_map = {
'metrics/accuracy':
tf.metrics.mean(
tf.reduce_all(tf.equal(flat_truth, flat_predictions), axis=-1)),
'metrics/recall':
tf.metrics.recall(flat_truth, flat_predictions),
'metrics/precision':
tf.metrics.precision(flat_truth, flat_predictions),
}
return r_loss, metric_map
示例2: truncate_labels
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def truncate_labels(context_labels, max_contexts):
"""Truncate labels based on max_contexts.
Limit non-null labels to only be one of the first 'max_context' contexts.
Otherwise mask it to -1 (the NULL label).
Args:
context_labels: <int32> [batch_size] with gold labels.
max_contexts: <int32> for max_contexts.
Returns:
truncated context_labels: <int32>[batch_size]
"""
# Null contexts are assigned label -1.
null_labels = tf.ones_like(context_labels, dtype=tf.int32) * -1
prune_gold_context = tf.greater_equal(context_labels, max_contexts)
context_labels = tf.where(prune_gold_context, null_labels, context_labels)
return context_labels
示例3: assert_box_normalized
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
"""Asserts the input box tensor is normalized.
Args:
boxes: a tensor of shape [N, 4] where N is the number of boxes.
maximum_normalized_coordinate: Maximum coordinate value to be considered
as normalized, default to 1.1.
Returns:
a tf.Assert op which fails when the input box tensor is not normalized.
Raises:
ValueError: When the input box tensor is not normalized.
"""
box_minimum = tf.reduce_min(boxes)
box_maximum = tf.reduce_max(boxes)
return tf.Assert(
tf.logical_and(
tf.less_equal(box_maximum, maximum_normalized_coordinate),
tf.greater_equal(box_minimum, 0)),
[boxes])
示例4: prune_small_boxes
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def prune_small_boxes(boxlist, min_side, scope=None):
"""Prunes small boxes in the boxlist which have a side smaller than min_side.
Args:
boxlist: BoxList holding N boxes.
min_side: Minimum width AND height of box to survive pruning.
scope: name scope.
Returns:
A pruned boxlist.
"""
with tf.name_scope(scope, 'PruneSmallBoxes'):
height, width = height_width(boxlist)
is_valid = tf.logical_and(tf.greater_equal(width, min_side),
tf.greater_equal(height, min_side))
return gather(boxlist, tf.reshape(tf.where(is_valid), [-1]))
示例5: test_loop_conditions
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def test_loop_conditions():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(1)
j = tf.constant(1)
k = tf.constant(5)
def c(i, j, k): return \
tf.equal(tf.not_equal(tf.less(i + j, 10),
tf.less(j * k, 100)),
tf.greater_equal(k, i + j))
def b(i, j, k): return [i+j, j+k, k+1]
r = tf.while_loop(c, b, loop_vars=[i, j, k])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
示例6: _create_topk_unique
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _create_topk_unique(inputs, k):
"""Creates the top k values in sorted order with indices.
Args:
inputs: A tensor with rank of 2. [batch_size, original_size].
k: An integer, number of top elements to select.
Returns:
topk_r2: A tensor, the k largest elements. [batch_size, k].
topk_indices_r2: A tensor, indices of the top k values. [batch_size, k].
"""
height = inputs.shape[0]
width = inputs.shape[1]
neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
ones = tf.ones([height, width], dtype=tf.float32)
neg_inf_r2 = ones * neg_inf_r0
inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)
# Select the current largest value k times and keep them in topk_r2. The
# selected largest values are marked as the smallest value to avoid being
# selected again.
tmp = inputs
topk_r2 = tf.zeros([height, k], dtype=tf.float32)
for i in range(k):
kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
k_mask = tf.tile(tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0),
[height, 1])
topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2)
ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width]))
tmp = tf.where(ge_r2, neg_inf_r2, inputs)
log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
next_power_of_two = 1 << log2_ceiling
count_mask = next_power_of_two - 1
mask_r0 = tf.constant(count_mask)
mask_r2 = tf.fill([height, k], mask_r0)
topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
return topk_r2, topk_indices_r2
示例7: _crop
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _crop(image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: `Tensor` image of shape [height, width, channels].
offset_height: `Tensor` indicating the height offset.
offset_width: `Tensor` indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3), ["Rank of image must be equal to 3."])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
["Crop size greater than the image size."])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
示例8: _at_least_x_are_true
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _at_least_x_are_true(a, b, x):
"""At least `x` of `a` and `b` `Tensors` are true."""
match = tf.equal(a, b)
match = tf.cast(match, tf.int32)
return tf.greater_equal(tf.reduce_sum(match), x)
示例9: matched_column_indicator
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def matched_column_indicator(self):
"""Returns column indices that are matched.
Returns:
column_indices: int32 tensor of shape [K] with column indices.
"""
return tf.greater_equal(self._match_results, 0)
示例10: _at_least_x_are_equal
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _at_least_x_are_equal(a, b, x):
"""At least `x` of `a` and `b` `Tensors` are equal."""
match = tf.equal(a, b)
match = tf.cast(match, tf.int32)
return tf.greater_equal(tf.reduce_sum(match), x)
示例11: _get_action_type
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _get_action_type(extended_indices, output_vocab_size, model_config):
"""Returns action_type tensor."""
action_type = tf.constant(0, dtype=tf.int64)
for action_type_range in _get_action_types_to_range(output_vocab_size,
model_config):
index_in_range = tf.logical_and(
tf.greater_equal(extended_indices, action_type_range.start_index),
tf.less(extended_indices, action_type_range.end_index))
action_type += (
tf.to_int64(index_in_range) * tf.constant(
action_type_range.action_type, dtype=tf.int64))
return action_type
示例12: load_nli_file
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def load_nli_file(data_path, num_par=2):
"""Build a tf.data.Data from a file of NLI examples."""
tokenizer = tokenization.NltkTokenizer()
dataset = tf.data.TextLineDataset(data_path)
dataset = dataset.map(
functools.partial(_nli_line_to_tensors, tokenizer=tokenizer),
num_parallel_calls=num_par)
dataset = dataset.filter(lambda x: tf.greater_equal(x["label"], 0))
return dataset
示例13: _crop
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _crop(image, offset_height, offset_width, crop_height, crop_width):
"""Crops the given image using the provided offsets and sizes.
Note that the method doesn't assume we know the input image size but it does
assume we know the input image rank.
Args:
image: an image of shape [height, width, channels].
offset_height: a scalar tensor indicating the height offset.
offset_width: a scalar tensor indicating the width offset.
crop_height: the height of the cropped image.
crop_width: the width of the cropped image.
Returns:
the cropped (and resized) image.
Raises:
InvalidArgumentError: if the rank is not 3 or if the image dimensions are
less than the crop size.
"""
original_shape = tf.shape(image)
rank_assertion = tf.Assert(
tf.equal(tf.rank(image), 3),
['Rank of image must be equal to 3.'])
with tf.control_dependencies([rank_assertion]):
cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]])
size_assertion = tf.Assert(
tf.logical_and(
tf.greater_equal(original_shape[0], crop_height),
tf.greater_equal(original_shape[1], crop_width)),
['Crop size greater than the image size.'])
offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0]))
# Use tf.slice instead of crop_to_bounding box as it accepts tensors to
# define the crop size.
with tf.control_dependencies([size_assertion]):
image = tf.slice(image, offsets, cropped_shape)
return tf.reshape(image, cropped_shape)
示例14: check_min_image_dim
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def check_min_image_dim(min_dim, image_tensor):
"""Checks that the image width/height are greater than some number.
This function is used to check that the width and height of an image are above
a certain value. If the image shape is static, this function will perform the
check at graph construction time. Otherwise, if the image shape varies, an
Assertion control dependency will be added to the graph.
Args:
min_dim: The minimum number of pixels along the width and height of the
image.
image_tensor: The image tensor to check size for.
Returns:
If `image_tensor` has dynamic size, return `image_tensor` with a Assert
control dependency. Otherwise returns image_tensor.
Raises:
ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
"""
image_shape = image_tensor.get_shape()
image_height = static_shape.get_height(image_shape)
image_width = static_shape.get_width(image_shape)
if image_height is None or image_width is None:
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
['image size must be >= {} in both height and width.'.format(min_dim)])
with tf.control_dependencies([shape_assert]):
return tf.identity(image_tensor)
if image_height < min_dim or image_width < min_dim:
raise ValueError(
'image size must be >= %d in both height and width; image dim = %d,%d' %
(min_dim, image_height, image_width))
return image_tensor
示例15: _extract_proposal_features
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater_equal [as 別名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
activations: A dictionary mapping feature extractor tensor names to
tensors
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
with tf.variable_scope('InceptionV2',
reuse=self._reuse_weights) as scope:
with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d],
batch_norm_scale=True,
train_batch_norm=self._train_batch_norm):
_, activations = inception_v2.inception_v2_base(
preprocessed_inputs,
final_endpoint='Mixed_4e',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
return activations['Mixed_4e'], activations