當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.greater方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.greater方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.greater方法的具體用法?Python v1.greater怎麽用?Python v1.greater使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.greater方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: unwrap

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def unwrap(p, discont=np.pi, axis=-1):
  """Unwrap a cyclical phase tensor.

  Args:
    p: Phase tensor.
    discont: Float, size of the cyclic discontinuity.
    axis: Axis of which to unwrap.

  Returns:
    unwrapped: Unwrapped tensor of same size as input.
  """
  dd = diff(p, axis=axis)
  ddmod = tf.mod(dd + np.pi, 2.0 * np.pi) - np.pi
  idx = tf.logical_and(tf.equal(ddmod, -np.pi), tf.greater(dd, 0))
  ddmod = tf.where(idx, tf.ones_like(ddmod) * np.pi, ddmod)
  ph_correct = ddmod - dd
  idx = tf.less(tf.abs(dd), discont)
  ddmod = tf.where(idx, tf.zeros_like(ddmod), dd)
  ph_cumsum = tf.cumsum(ph_correct, axis=axis)

  shape = p.get_shape().as_list()
  shape[axis] = 1
  ph_cumsum = tf.concat([tf.zeros(shape, dtype=p.dtype), ph_cumsum], axis=axis)
  unwrapped = p + ph_cumsum
  return unwrapped 
開發者ID:magenta,項目名稱:magenta,代碼行數:27,代碼來源:spectral_ops.py

示例2: _decode_masks

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _decode_masks(self, parsed_tensors):
    """Decode a set of PNG masks to the tf.float32 tensors."""
    def _decode_png_mask(png_bytes):
      mask = tf.squeeze(
          tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1)
      mask = tf.cast(mask, dtype=tf.float32)
      mask.set_shape([None, None])
      return mask

    height = parsed_tensors['image/height']
    width = parsed_tensors['image/width']
    masks = parsed_tensors['image/object/mask']
    return tf.cond(
        tf.greater(tf.size(masks), 0),
        lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32),
        lambda: tf.zeros([0, height, width], dtype=tf.float32)) 
開發者ID:JunweiLiang,項目名稱:Object_Detection_Tracking,代碼行數:18,代碼來源:tf_example_decoder.py

示例3: maybe_add_noise

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def maybe_add_noise(image, noise_shape, scale0, scale1,
                    image_noise_probability, image_noise_ratio):
  """Add noise at two scales."""

  if image_noise_probability < 0.000001 or (
      image_noise_ratio < 0.000001):
    return image

  noise_list = []
  for scale in [scale0, scale1]:
    rand_image_noise_ratio = tf.random.uniform(
        shape=[], minval=0.0, maxval=image_noise_ratio)
    noise_list.append(
        _rand_noise(0.0, rand_image_noise_ratio, scale, noise_shape))

  skip_noise = tf.greater(tf.random.uniform([]), image_noise_probability)
  image = tf.cond(skip_noise,
                  lambda: image, lambda: image + noise_list[0])
  image = tf.cond(skip_noise,
                  lambda: image, lambda: image + noise_list[1])

  return image 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:24,代碼來源:data_aug_lib.py

示例4: intensity_shift

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def intensity_shift(
    image, label, per_class_intensity_scale, per_class_intensity_shift):
  """Perturb intensity in lesion and non-lesion regions."""

  if per_class_intensity_scale < 0.000001 and (
      per_class_intensity_shift < 0.000001):
    return image

  # Randomly change (mostly increase) intensity of non-lesion region.
  per_class_noise = _truncated_normal(
      per_class_intensity_shift, per_class_intensity_scale)
  image = image + per_class_noise * (
      image * tf.cast(tf.greater(label, 1.5), tf.float32))

  # Randomly change (mostly decrease) intensity of lesion region.
  per_class_noise = _truncated_normal(
      -per_class_intensity_shift, per_class_intensity_scale)
  image = image + per_class_noise * (
      image * tf.cast(tf.less(label, 1.5), tf.float32))

  return image 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:23,代碼來源:data_aug_lib.py

示例5: image_corruption

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def image_corruption(
    image, label, reso, image_corrupt_ratio_mean, image_corrupt_ratio_stddev):
  """Randomly drop non-lesion pixels."""

  if image_corrupt_ratio_mean < 0.000001 and (
      image_corrupt_ratio_stddev < 0.000001):
    return image

  # Corrupt non-lesion region according to keep_mask.
  keep_mask = _gen_rand_mask(
      1 - image_corrupt_ratio_mean,
      image_corrupt_ratio_stddev,
      reso // 3, image.shape)

  keep_mask = tf.logical_or(tf.greater(label, 1.5), keep_mask)
  image *= tf.cast(keep_mask, tf.float32)

  return image 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:20,代碼來源:data_aug_lib.py

示例6: compute_thresholded_labels

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def compute_thresholded_labels(labels, null_threshold=4):
  """Computes thresholded labels.

  Args:
    labels: <int32> [batch_size, num_annotators]
    null_threshold: If number of null annotations is greater than or equal to
      this threshold, all annotations are set to null for this example.

  Returns:
    thresholded_labels: <int32> [batch_size, num_annotators]
  """
  null_labels = tf.equal(labels, 0)

  # <int32> [batch_size]
  null_count = tf.reduce_sum(tf.to_int32(null_labels), 1)
  threshold_mask = tf.less(null_count, null_threshold)

  # <bool> [batch_size, num_annotators]
  threshold_mask = tf.tile(
      tf.expand_dims(threshold_mask, -1), [1, tf.shape(labels)[1]])

  # <bool> [batch_size, num_annotators]
  thresholded_labels = tf.where(
      threshold_mask, x=labels, y=tf.zeros_like(labels))
  return thresholded_labels 
開發者ID:google-research,項目名稱:language,代碼行數:27,代碼來源:nq_long_utils.py

示例7: f1_metric

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def f1_metric(precision, precision_op, recall, recall_op):
  """Computes F1 based on precision and recall.

  Args:
    precision: <float> [batch_size]
    precision_op: Update op for precision.
    recall: <float> [batch_size]
    recall_op: Update op for recall.

  Returns:
    tensor and update op for F1.
  """
  f1_op = tf.group(precision_op, recall_op)
  numerator = 2 * tf.multiply(precision, recall)
  denominator = tf.add(precision, recall)
  f1 = tf.divide(numerator, denominator)

  # <float> [batch_size]
  zero_vec = tf.zeros_like(f1)
  is_valid = tf.greater(denominator, zero_vec)
  f1 = tf.where(is_valid, x=f1, y=zero_vec)

  return f1, f1_op 
開發者ID:google-research,項目名稱:language,代碼行數:25,代碼來源:nq_long_utils.py

示例8: _reshape_instance_masks

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
    masks = keys_to_tensors['image/object/mask']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    masks = tf.reshape(
        tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape)
    return tf.cast(masks, tf.float32) 
開發者ID:tensorflow,項目名稱:models,代碼行數:24,代碼來源:tf_example_decoder.py

示例9: _get_refined_encodings_for_postitive_class

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _get_refined_encodings_for_postitive_class(
      self, refined_box_encodings, flat_cls_targets_with_background,
      batch_size):
    # We only predict refined location encodings for the non background
    # classes, but we now pad it to make it compatible with the class
    # predictions
    refined_box_encodings_with_background = tf.pad(refined_box_encodings,
                                                   [[0, 0], [1, 0], [0, 0]])
    refined_box_encodings_masked_by_class_targets = (
        box_list_ops.boolean_mask(
            box_list.BoxList(
                tf.reshape(refined_box_encodings_with_background,
                           [-1, self._box_coder.code_size])),
            tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
            use_static_shapes=self._use_static_shapes,
            indicator_sum=batch_size * self.max_num_proposals
            if self._use_static_shapes else None).get())
    return tf.reshape(
        refined_box_encodings_masked_by_class_targets, [
            batch_size, self.max_num_proposals,
            self._box_coder.code_size
        ]) 
開發者ID:tensorflow,項目名稱:models,代碼行數:24,代碼來源:faster_rcnn_meta_arch.py

示例10: _padded_batched_proposals_indicator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _padded_batched_proposals_indicator(self,
                                          num_proposals,
                                          max_num_proposals):
    """Creates indicator matrix of non-pad elements of padded batch proposals.

    Args:
      num_proposals: Tensor of type tf.int32 with shape [batch_size].
      max_num_proposals: Maximum number of proposals per image (integer).

    Returns:
      A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
    """
    batch_size = tf.size(num_proposals)
    tiled_num_proposals = tf.tile(
        tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
    tiled_proposal_index = tf.tile(
        tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
    return tf.greater(tiled_num_proposals, tiled_proposal_index) 
開發者ID:tensorflow,項目名稱:models,代碼行數:20,代碼來源:faster_rcnn_meta_arch.py

示例11: test_visualize_boxes_in_image

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def test_visualize_boxes_in_image(self):
    def graph_fn():
      image = tf.zeros((6, 4, 3))
      corners = tf.constant([[0, 0, 5, 3],
                             [0, 0, 3, 2]], tf.float32)
      boxes = box_list.BoxList(corners)
      image_and_boxes = box_list_ops.visualize_boxes_in_image(image, boxes)
      image_and_boxes_bw = tf.cast(
          tf.greater(tf.reduce_sum(image_and_boxes, 2), 0.0), dtype=tf.float32)
      return image_and_boxes_bw
    exp_result = [[1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 1, 1, 0],
                  [1, 0, 1, 0],
                  [1, 1, 1, 0],
                  [0, 0, 0, 0]]
    output = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(output.astype(int), exp_result) 
開發者ID:tensorflow,項目名稱:models,代碼行數:20,代碼來源:box_list_ops_test.py

示例12: test_nested_loop

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def test_nested_loop():
    graph = tf.Graph()
    with graph.as_default():

        def body(x):
            def nest_body(c):
                return tf.multiply(c, 2)
            def cd(c): return tf.less(c, 10)
            c = tf.constant(2)
            res = tf.while_loop(cd, nest_body, loop_vars=[c])
            return tf.nn.relu(x + res)

        def condition(x):
            return tf.greater(x, 100)
        x = tf.constant(3)
        r = tf.while_loop(condition, body, loop_vars=[x])

        with tf.Session() as sess:
            tf_out = sess.run(r)

    check_equal(graph, tf_out) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:23,代碼來源:test_control_flow.py

示例13: _localization_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _localization_loss(self, pred_loc, gt_loc, gt_label, num_matched_boxes):
    """Computes the localization loss.

    Computes the localization loss using smooth l1 loss.
    Args:
      pred_loc: a flatten tensor that includes all predicted locations. The
        shape is [batch_size, num_anchors, 4].
      gt_loc: a tensor representing box regression targets in
        [batch_size, num_anchors, 4].
      gt_label: a tensor that represents the classification groundtruth targets.
        The shape is [batch_size, num_anchors, 1].
      num_matched_boxes: the number of anchors that are matched to a groundtruth
        targets, used as the loss normalizater. The shape is [batch_size].
    Returns:
      box_loss: a float32 representing total box regression loss.
    """
    mask = tf.greater(tf.squeeze(gt_label), 0)
    float_mask = tf.cast(mask, tf.float32)

    smooth_l1 = tf.reduce_sum(tf.losses.huber_loss(
        gt_loc, pred_loc,
        reduction=tf.losses.Reduction.NONE
    ), axis=2)
    smooth_l1 = tf.multiply(smooth_l1, float_mask)
    box_loss = tf.reduce_sum(smooth_l1, axis=1)

    return tf.reduce_mean(box_loss / num_matched_boxes) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:29,代碼來源:ssd_model.py

示例14: _classification_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def _classification_loss(self, pred_label, gt_label, num_matched_boxes):
    """Computes the classification loss.

    Computes the classification loss with hard negative mining.
    Args:
      pred_label: a flatten tensor that includes all predicted class. The shape
        is [batch_size, num_anchors, num_classes].
      gt_label: a tensor that represents the classification groundtruth targets.
        The shape is [batch_size, num_anchors, 1].
      num_matched_boxes: the number of anchors that are matched to a groundtruth
        targets. This is used as the loss normalizater.

    Returns:
      box_loss: a float32 representing total box regression loss.
    """
    cross_entropy = tf.losses.sparse_softmax_cross_entropy(
        gt_label, pred_label, reduction=tf.losses.Reduction.NONE)

    mask = tf.greater(tf.squeeze(gt_label), 0)
    float_mask = tf.cast(mask, tf.float32)

    # Hard example mining
    neg_masked_cross_entropy = cross_entropy * (1 - float_mask)
    relative_position = tf.argsort(
        tf.argsort(
            neg_masked_cross_entropy, direction='DESCENDING'))
    num_neg_boxes = tf.minimum(
        tf.to_int32(num_matched_boxes) * ssd_constants.NEGS_PER_POSITIVE,
        ssd_constants.NUM_SSD_BOXES)
    top_k_neg_mask = tf.cast(tf.less(
        relative_position,
        tf.tile(num_neg_boxes[:, tf.newaxis], (1, ssd_constants.NUM_SSD_BOXES))
    ), tf.float32)

    class_loss = tf.reduce_sum(
        tf.multiply(cross_entropy, float_mask + top_k_neg_mask), axis=1)

    return tf.reduce_mean(class_loss / num_matched_boxes) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:40,代碼來源:ssd_model.py

示例15: body

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import greater [as 別名]
def body(self, features):
    self.has_actions = "input_action" in features
    self.has_rewards = "target_reward" in features
    self.has_policies = "target_policy" in features
    self.has_values = "target_value" in features
    hparams = self.hparams

    def merge(inputs, targets):
      """Split inputs and targets into lists."""
      inputs = tf.unstack(inputs, axis=1)
      targets = tf.unstack(targets, axis=1)
      assert len(inputs) == hparams.video_num_input_frames
      assert len(targets) == hparams.video_num_target_frames
      return inputs + targets

    frames = merge(features["inputs"], features["targets"])
    frames_raw = merge(features["inputs_raw"], features["targets_raw"])
    actions, rewards = None, None
    if self.has_actions:
      actions = merge(features["input_action"], features["target_action"])
    if self.has_rewards:
      rewards = merge(features["input_reward"], features["target_reward"])

    # Reset the internal states if the reset_internal_states has been
    # passed as a feature and has greater value than 0.
    if self.is_recurrent_model and self.internal_states is not None:
      def reset_func():
        reset_ops = flat_lists(self.reset_internal_states_ops())
        with tf.control_dependencies(reset_ops):
          return tf.no_op()
      if self.is_predicting and "reset_internal_states" in features:
        reset = features["reset_internal_states"]
        reset = tf.greater(tf.reduce_sum(reset), 0.5)
        reset_ops = tf.cond(reset, reset_func, tf.no_op)
      else:
        reset_ops = tf.no_op()
      with tf.control_dependencies([reset_ops]):
        frames[0] = tf.identity(frames[0])

    with tf.control_dependencies([frames[0]]):
      return self.__process(frames, actions, rewards, frames_raw) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:43,代碼來源:base.py


注:本文中的tensorflow.compat.v1.greater方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。