本文整理匯總了Python中tensorflow.compat.v1.get_variable方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.get_variable方法的具體用法?Python v1.get_variable怎麽用?Python v1.get_variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.get_variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_gradients_to_apply
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def get_gradients_to_apply(self, device_num, gradient_state):
device_grads = gradient_state # From 2nd result of preprocess_device_grads.
avg_grads, self.grad_has_inf_nan = (
variable_mgr_util.aggregate_gradients_using_copy_with_device_selection(
self.benchmark_cnn,
device_grads,
use_mean=True,
check_inf_nan=self.benchmark_cnn.enable_auto_loss_scale))
# Make shadow variable on a parameter server for each original trainable
# variable.
for i, (g, v) in enumerate(avg_grads):
my_name = variable_mgr_util.PS_SHADOW_VAR_PREFIX + '/' + v.name
if my_name.endswith(':0'):
my_name = my_name[:-2]
new_v = tf.get_variable(
my_name,
dtype=v.dtype.base_dtype,
initializer=v.initial_value,
trainable=True)
avg_grads[i] = (g, new_v)
return avg_grads
示例2: _conv2d_impl
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def _conv2d_impl(self, input_layer, num_channels_in, filters, kernel_size,
strides, padding, kernel_initializer):
if self.use_tf_layers:
return conv_layers.conv2d(input_layer, filters, kernel_size, strides,
padding, self.channel_pos,
kernel_initializer=kernel_initializer,
use_bias=False)
else:
weights_shape = [kernel_size[0], kernel_size[1], num_channels_in, filters]
# We use the name 'conv2d/kernel' so the variable has the same name as its
# tf.layers equivalent. This way, if a checkpoint is written when
# self.use_tf_layers == True, it can be loaded when
# self.use_tf_layers == False, and vice versa.
weights = self.get_variable('conv2d/kernel', weights_shape,
self.variable_dtype, self.dtype,
initializer=kernel_initializer)
if self.data_format == 'NHWC':
strides = [1] + strides + [1]
else:
strides = [1, 1] + strides
return tf.nn.conv2d(input_layer, weights, strides, padding,
data_format=self.data_format)
示例3: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def __init__(self, tensors):
tensors = list(tensors)
with tf.variable_scope('averaged'):
self._num_samples = tf.Variable(0, name='num_samples', trainable=False)
with tf.variable_scope('avg'):
self._averages = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
with tf.variable_scope('save'):
self._saves = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
self._tensors = tensors
self._take_sample = self._make_take_sample()
self._switch = self._make_swith_to_average()
self._restore = self._make_restore()
self._reset = self._make_reset()
示例4: layer_norm
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def layer_norm(x, reduction_indices, epsilon=1e-9, gain=None, bias=None,
per_element=True, scope=None):
"""DOC."""
reduction_indices = ensure_list(reduction_indices)
mean = tf.reduce_mean(x, reduction_indices, keep_dims=True)
variance = tf.reduce_mean(tf.squared_difference(x, mean),
reduction_indices, keep_dims=True)
normalized = (x - mean) / tf.sqrt(variance + epsilon)
dtype = x.dtype
shape = x.get_shape().as_list()
for i in six.moves.range(len(shape)):
if i not in reduction_indices or not per_element:
shape[i] = 1
with tf.variable_scope(scope or 'layer_norm'):
if gain is None:
gain = tf.get_variable('gain', shape=shape, dtype=dtype,
initializer=tf.ones_initializer())
if bias is None:
bias = tf.get_variable('bias', shape=shape, dtype=dtype,
initializer=tf.zeros_initializer())
return gain*normalized+bias
示例5: _build_tiled_linear
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def _build_tiled_linear(self, inputs, input_name_and_sizes,
output_name_and_sizes, add_bias):
results = []
for output_name, output_size in output_name_and_sizes:
r = 0.0
for input_, (input_name, input_size) in zip(inputs, input_name_and_sizes):
name = 'W_{}_{}'.format(input_name, output_name)
weight = self._get_variable(
name, shape=[output_size, input_size])
r += tf.sparse_tensor_dense_matmul(weight, input_, adjoint_b=True)
r = tf.transpose(r)
if add_bias:
# Biases are dense, hence we call _get_variable of the base
# class.
r += super(SparseTiledLinear, self)._get_variable(
'B_{}'.format(output_name), shape=[output_size],
default_initializer=tf.zeros_initializer())
results.append(r)
return results
# TODO(melisgl): Since computation is the same as in TiledLinear,
# perhaps this should be implemented as a custom getter (see
# tf.get_variable) instead of being tied to tiling.
示例6: init_vq_bottleneck
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def init_vq_bottleneck(bottleneck_size, hidden_size):
"""Get lookup table for VQ bottleneck."""
means = tf.get_variable(
name="means",
shape=[bottleneck_size, hidden_size],
initializer=tf.uniform_unit_scaling_initializer())
ema_count = tf.get_variable(
name="ema_count",
shape=[bottleneck_size],
initializer=tf.constant_initializer(0),
trainable=False)
with tf.colocate_with(means):
ema_means = tf.get_variable(
name="ema_means",
initializer=means.initialized_value(),
trainable=False)
return means, ema_means, ema_count
示例7: add_depth_embedding
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def add_depth_embedding(x):
"""Add n-dimensional embedding as the depth embedding (timing signal).
Adds embeddings to represent the position of the step in the recurrent
tower.
Args:
x: a tensor with shape [max_step, batch, length, depth]
Returns:
a Tensor the same shape as x.
"""
x_shape = common_layers.shape_list(x)
depth = x_shape[-1]
num_steps = x_shape[0]
shape = [num_steps, 1, 1, depth]
depth_embedding = (
tf.get_variable(
"depth_embedding",
shape,
initializer=tf.random_normal_initializer(0, depth**-0.5)) * (depth**
0.5))
x += depth_embedding
return x
示例8: scale_gaussian_prior
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def scale_gaussian_prior(name, z, logscale_factor=3.0, trainable=True):
"""Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component.
s^i is a learnable parameter with identity initialization.
std^i is optionally learnable with identity initialization.
Args:
name: variable scope.
z: input_tensor
logscale_factor: equivalent to scaling up the learning_rate by a factor
of logscale_factor.
trainable: Whether or not std^i is learnt.
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
z_shape = common_layers.shape_list(z)
latent_multiplier = tf.get_variable(
"latent_multiplier", shape=z_shape, dtype=tf.float32,
initializer=tf.ones_initializer())
log_scale = tf.get_variable(
"log_scale_latent", shape=z_shape, dtype=tf.float32,
initializer=tf.zeros_initializer(), trainable=trainable)
log_scale = log_scale * logscale_factor
return tfp.distributions.Normal(
loc=latent_multiplier * z, scale=tf.exp(log_scale))
示例9: _conv_function
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def _conv_function(self, input_tensor, output_depth, padding):
input_depth = input_tensor.shape.as_list()[-1]
if not ((output_depth >= input_depth) and
(output_depth % input_depth == 0)):
raise ValueError(
"Depthwise layer output_depth (%s) must be greater or equal to and "
"a multiple of the depth of the "
"input tensor (%s)." % (output_depth, input_depth))
channel_multiplier = calculate_depthwise_channel_multiplier(
input_depth, output_depth)
kernel = tf.get_variable(
"kernel", [self._conv_width, 1, input_depth, channel_multiplier])
return tf.nn.depthwise_conv2d(
input_tensor,
kernel, [1, 1, 1, 1],
padding=padding,
name="depthwise_conv_%sx1" % str(self._conv_width))
示例10: init_internal_states
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def init_internal_states(self):
# Hardcoded LSTM-CONV shapes.
# These sizes are calculated based on original atari frames.
# TODO(mbz): find a cleaner way of doing this maybe?!
batch_size = self.hparams.batch_size
shapes = [(batch_size, 53, 40, 8),
(batch_size, 53, 40, 8),
(batch_size, 27, 20, 16),
(batch_size, 27, 20, 16),
(batch_size, 53, 40, 8)]
with tf.variable_scope("clean_scope"):
# Initialize conv-lstm states with zeros
init = tf.zeros_initializer()
states = []
for i, shape in enumerate(shapes):
# every lstm-conv state has two variables named c and h.
c = tf.get_variable("c%d" % i, shape, trainable=False, initializer=init)
h = tf.get_variable("h%d" % i, shape, trainable=False, initializer=init)
states.append((c, h))
return states
示例11: group_norm
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def group_norm(x, filters=None, num_groups=8, epsilon=1e-5):
"""Group normalization as in https://arxiv.org/abs/1803.08494."""
x_shape = shape_list(x)
if filters is None:
filters = x_shape[-1]
assert len(x_shape) == 4
assert filters % num_groups == 0
# Prepare variables.
scale = tf.get_variable(
"group_norm_scale", [filters], initializer=tf.ones_initializer())
bias = tf.get_variable(
"group_norm_bias", [filters], initializer=tf.zeros_initializer())
epsilon, scale, bias = [cast_like(t, x) for t in [epsilon, scale, bias]]
# Reshape and compute group norm.
x = tf.reshape(x, x_shape[:-1] + [num_groups, filters // num_groups])
# Calculate mean and variance on heights, width, channels (not groups).
mean, variance = tf.nn.moments(x, [1, 2, 4], keep_dims=True)
norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
return tf.reshape(norm_x, x_shape) * scale + bias
示例12: zero_add
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def zero_add(previous_value, x, name=None, reuse=None):
"""Resnet connection with zero initialization.
Another type of resnet connection which returns previous_value + gamma * x.
gamma is a trainable scalar and initialized with zero. It is useful when a
module is plugged into a trained model and we want to make sure it matches the
original model's performance.
Args:
previous_value: A tensor.
x: A tensor.
name: name of variable scope; defaults to zero_add.
reuse: reuse scope.
Returns:
previous_value + gamma * x.
"""
with tf.variable_scope(name, default_name="zero_add", reuse=reuse):
gamma = tf.get_variable("gamma", (), initializer=tf.zeros_initializer())
return previous_value + gamma * x
示例13: testSpectralNorm
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def testSpectralNorm(self):
# Test that after 20 calls to apply_spectral_norm, the spectral
# norm of the normalized matrix is close to 1.0
with tf.Graph().as_default():
weights = tf.get_variable("w", dtype=tf.float32, shape=[2, 3, 50, 100])
weights = tf.multiply(weights, 10.0)
normed_weight, assign_op = common_layers.apply_spectral_norm(weights)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(20):
sess.run(assign_op)
normed_weight, assign_op = common_layers.apply_spectral_norm(
weights)
normed_weight = sess.run(normed_weight).reshape(-1, 100)
_, s, _ = np.linalg.svd(normed_weight)
self.assertTrue(np.allclose(s[0], 1.0, rtol=0.1))
示例14: dense_weightnorm
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def dense_weightnorm(
name, x, n_out, x_mask, init_scale, init, dtype=tf.float32):
"""Dense layer with weight normalization."""
n_in = common_layers.shape_list(x)[2]
eps = tf.keras.backend.epsilon()
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
v = tf.get_variable(
"v", [n_in, n_out], dtype,
initializer=tf.random_normal_initializer(0, 0.05), trainable=True)
v = v / tf.norm(v, axis=0, keepdims=True)
t = tf.matmul(x, v) # [B, L, n_out]
mean, var = moments_over_bl(t, x_mask)
g_init = init_scale / (tf.sqrt(var) + eps)
g = get_variable_ddi(
"g", [n_out], g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
b = get_variable_ddi(
"b", [n_out], -mean*g_init, init,
initializer=tf.zeros_initializer, dtype=dtype, trainable=True)
w = g * v
y = tf.matmul(x, w) + b
tf.summary.histogram("_g", g)
return y
示例15: get_vq_codebook
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import get_variable [as 別名]
def get_vq_codebook(codebook_size, hidden_size):
"""Get lookup table for VQ bottleneck."""
with tf.variable_scope("vq", reuse=tf.AUTO_REUSE):
means = tf.get_variable(
name="means",
shape=[codebook_size, hidden_size],
initializer=tf.uniform_unit_scaling_initializer())
ema_count = tf.get_variable(
name="ema_count",
shape=[codebook_size],
initializer=tf.constant_initializer(0),
trainable=False)
with tf.colocate_with(means):
ema_means = tf.get_variable(
name="ema_means",
initializer=means.initialized_value(),
trainable=False)
return means, ema_means, ema_count