當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.floordiv方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.floordiv方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.floordiv方法的具體用法?Python v1.floordiv怎麽用?Python v1.floordiv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.floordiv方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: int_to_bit

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def int_to_bit(self, x_int, num_bits, base=2):
    """Turn x_int representing numbers into a bitwise (lower-endian) tensor.

    Args:
        x_int: Tensor containing integer to be converted into base
        notation.
        num_bits: Number of bits in the representation.
        base: Base of the representation.

    Returns:
        Corresponding number expressed in base.
    """
    x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1))
    # pylint: disable=g-complex-comprehension
    x_labels = [
        tf.floormod(
            tf.floordiv(tf.to_int32(x_l),
                        tf.to_int32(base)**i), tf.to_int32(base))
        for i in range(num_bits)]
    res = tf.concat(x_labels, axis=-1)
    return tf.to_float(res) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:vq_discrete.py

示例2: int_to_bit

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def int_to_bit(x_int, num_bits, base=2):
  """Turn x_int representing numbers into a bitwise (lower-endian) tensor.

  Args:
    x_int: Tensor containing integer to be converted into base notation.
    num_bits: Number of bits in the representation.
    base: Base of the representation.

  Returns:
    Corresponding number expressed in base.
  """
  x_l = tf.to_int32(tf.expand_dims(x_int, axis=-1))
  x_labels = [tf.floormod(
      tf.floordiv(tf.to_int32(x_l), tf.to_int32(base)**i), tf.to_int32(base))
              for i in range(num_bits)]
  res = tf.concat(x_labels, axis=-1)
  return tf.to_float(res) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:discretization.py

示例3: loss_function

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def loss_function(self, inputs, build_network_result):
    """Computes the ctc loss for the current batch of predictions.

    Args:
      inputs: the input list of the model.
      build_network_result: a BuildNetworkResult returned by build_network().

    Returns:
      The loss tensor of the model.
    """
    logits = build_network_result.logits
    actual_time_steps = inputs[2]
    probs = tf.nn.softmax(logits)
    ctc_time_steps = tf.shape(probs)[1]
    ctc_input_length = tf.to_float(
        tf.multiply(actual_time_steps, ctc_time_steps))
    ctc_input_length = tf.to_int32(
        tf.floordiv(ctc_input_length, tf.to_float(self.max_time_steps)))

    label_length = inputs[3]
    label_length = tf.to_int32(tf.squeeze(label_length))
    ctc_input_length = tf.to_int32(tf.squeeze(ctc_input_length))

    labels = inputs[1]
    sparse_labels = tf.to_int32(
        tf.keras.backend.ctc_label_dense_to_sparse(labels, label_length))
    y_pred = tf.log(
        tf.transpose(probs, perm=[1, 0, 2]) + tf.keras.backend.epsilon())

    losses = tf.expand_dims(
        tf.nn.ctc_loss(
            labels=sparse_labels,
            inputs=y_pred,
            sequence_length=ctc_input_length,
            ignore_longer_outputs_than_inputs=True),
        axis=1)
    loss = tf.reduce_mean(losses)
    return loss 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:40,代碼來源:deepspeech.py

示例4: aggregate_sparse_indices

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def aggregate_sparse_indices(indices, values, shape, agg_fn="sum"):
  """Sums values corresponding to repeated indices.

  Returns the unique indices and their summed values.

  Args:
    indices: [num_nnz, rank] Tensor.
    values: [num_nnz] Tensor.
    shape: [rank] Tensor.
    agg_fn: Method to use for aggregation - `sum` or `max`.

  Returns:
    indices: [num_uniq, rank] Tensor.
    values: [num_uniq] Tensor.
  """
  # Linearize the indices.
  scaling_vec = tf.cumprod(tf.cast(shape, indices.dtype), exclusive=True)
  linearized = tf.linalg.matvec(indices, scaling_vec)
  # Get the unique indices, and their positions in the array
  y, idx = tf.unique(linearized)
  # Use the positions of the unique values as the segment ids to
  # get the unique values
  idx.set_shape([None])
  if agg_fn == "sum":
    values = tf.unsorted_segment_sum(values, idx, tf.shape(y)[0])
  elif agg_fn == "max":
    values = tf.unsorted_segment_max(values, idx, tf.shape(y)[0])
  # Go back to ND indices
  y = tf.expand_dims(y, 1)
  indices = tf.floormod(
      tf.floordiv(y, tf.expand_dims(scaling_vec, 0)),
      tf.cast(tf.expand_dims(shape, 0), indices.dtype))
  return indices, values 
開發者ID:google-research,項目名稱:language,代碼行數:35,代碼來源:model_fns.py

示例5: fpn_feature_levels

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def fpn_feature_levels(num_levels, unit_scale_index, image_ratio, boxes):
  """Returns fpn feature level for each box based on its area.

  See section 4.2 of https://arxiv.org/pdf/1612.03144.pdf for details.

  Args:
    num_levels: An integer indicating the number of feature levels to crop boxes
      from.
    unit_scale_index: An 0-based integer indicating the index of feature map
      which most closely matches the resolution of the pretrained model.
    image_ratio: A float indicating the ratio of input image area to pretraining
      image area.
    boxes: A float tensor of shape [batch, num_boxes, 4] containing boxes of the
      form [ymin, xmin, ymax, xmax] in normalized coordinates.

  Returns:
    An int32 tensor of shape [batch_size, num_boxes] containing feature indices.
  """
  assert num_levels > 0, (
      '`num_levels` must be > 0. Found {}'.format(num_levels))
  assert unit_scale_index < num_levels and unit_scale_index >= 0, (
      '`unit_scale_index` must be in [0, {}). Found {}.'.format(
          num_levels, unit_scale_index))
  box_height_width = boxes[:, :, 2:4] - boxes[:, :, 0:2]
  areas_sqrt = tf.sqrt(tf.reduce_prod(box_height_width, axis=2))
  log_2 = tf.cast(tf.log(2.0), dtype=boxes.dtype)
  levels = tf.cast(
      tf.floordiv(tf.log(areas_sqrt * image_ratio), log_2)
      +
      unit_scale_index,
      dtype=tf.int32)
  levels = tf.maximum(0, tf.minimum(num_levels - 1, levels))
  return levels 
開發者ID:tensorflow,項目名稱:models,代碼行數:35,代碼來源:ops.py

示例6: compute_progress

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import floordiv [as 別名]
def compute_progress(current_image_id, stable_stage_num_images,
                     transition_stage_num_images, num_blocks):
  """Computes the training progress.

  The training alternates between stable phase and transition phase.
  The `progress` indicates the training progress, i.e. the training is at
  - a stable phase p if progress = p
  - a transition stage between p and p + 1 if progress = p + fraction
  where p = 0,1,2.,...

  Note the max value of progress is `num_blocks` - 1.

  In terms of LOD (of the original implementation):
  progress = `num_blocks` - 1 - LOD

  Args:
    current_image_id: An scalar integer `Tensor` of the current image id, count
        from 0.
    stable_stage_num_images: An integer representing the number of images in
        each stable stage.
    transition_stage_num_images: An integer representing the number of images in
        each transition stage.
    num_blocks: Number of network blocks.

  Returns:
    A scalar float `Tensor` of the training progress.
  """
  # Note when current_image_id >= min_total_num_images - 1 (which means we
  # are already at the highest resolution), we want to keep progress constant.
  # Therefore, cap current_image_id here.
  capped_current_image_id = tf.minimum(
      current_image_id,
      min_total_num_images(stable_stage_num_images, transition_stage_num_images,
                           num_blocks) - 1)

  stage_num_images = stable_stage_num_images + transition_stage_num_images
  progress_integer = tf.floordiv(capped_current_image_id, stage_num_images)
  progress_fraction = tf.maximum(
      0.0,
      tf.to_float(
          tf.mod(capped_current_image_id, stage_num_images) -
          stable_stage_num_images) / tf.to_float(transition_stage_num_images))
  return tf.to_float(progress_integer) + progress_fraction 
開發者ID:magenta,項目名稱:magenta,代碼行數:45,代碼來源:networks.py


注:本文中的tensorflow.compat.v1.floordiv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。