當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.float32方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.float32方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.float32方法的具體用法?Python v1.float32怎麽用?Python v1.float32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.float32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testAppendGradientsWithLossScaleWithoutNan

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def testAppendGradientsWithLossScaleWithoutNan(self):
    v = tf.Variable(0)
    training_ops = []
    get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
    loss_scale_params = variable_mgr_util.AutoLossScaleParams(
        enable_auto_loss_scale=True,
        loss_scale=tf.Variable(4, dtype=tf.float32),
        loss_scale_normal_steps=tf.Variable(10),
        inc_loss_scale_every_n=10,
        is_chief=True)
    variable_mgr_util.append_gradients_with_loss_scale(
        training_ops,
        get_apply_gradients_ops_func,
        loss_scale_params,
        grad_has_inf_nan=tf.constant(False))

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(training_ops)
      self.assertEqual(sess.run(v), 1)
      self.assertEqual(sess.run(loss_scale_params.loss_scale), 8)
      self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:24,代碼來源:variable_mgr_util_test.py

示例2: testAppendGradientsWithLossScaleWithtNan

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def testAppendGradientsWithLossScaleWithtNan(self):
    v = tf.Variable(0)
    training_ops = []
    get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
    loss_scale_params = variable_mgr_util.AutoLossScaleParams(
        enable_auto_loss_scale=True,
        loss_scale=tf.Variable(4, dtype=tf.float32),
        loss_scale_normal_steps=tf.Variable(10),
        inc_loss_scale_every_n=10,
        is_chief=True)
    variable_mgr_util.append_gradients_with_loss_scale(
        training_ops,
        get_apply_gradients_ops_func,
        loss_scale_params,
        grad_has_inf_nan=tf.constant(True))

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(training_ops)
      self.assertEqual(sess.run(v), 0)  # Skip updating for v.
      # halve loss_scale and reset local_scale_normal_steps.
      self.assertEqual(sess.run(loss_scale_params.loss_scale), 2)
      self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:25,代碼來源:variable_mgr_util_test.py

示例3: _fp16_variable_creator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _fp16_variable_creator(next_creator, **kwargs):
  """Variable creator to create variables in fp32 and cast them to fp16."""
  dtype = kwargs.get('dtype', None)
  initial_value = kwargs.get('initial_value', None)
  if dtype is None:
    if initial_value is not None and not callable(initial_value):
      dtype = initial_value.dtype
  if dtype == tf.float16:
    if callable(initial_value):
      new_initial_value = lambda: tf.cast(initial_value(), tf.float32)
    else:
      new_initial_value = tf.cast(initial_value, tf.float32)
    kwargs['dtype'] = tf.float32
    kwargs['initial_value'] = new_initial_value
    var = next_creator(**kwargs)
    return tf.cast(var, dtype=tf.float16)
  else:
    return next_creator(**kwargs) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:20,代碼來源:official_ncf_model.py

示例4: build_network

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def build_network(self, images, phase_train=True, nclass=1001,
                    data_type=tf.float32):
    # pylint: disable=g-import-not-at-top
    try:
      from official.resnet.r1.imagenet_main import ImagenetModel
    except ImportError:
      tf.logging.fatal('Please include tensorflow/models to the PYTHONPATH.')
      raise
    images = tf.cast(images, data_type)
    model_class = ImagenetModel(resnet_size=self.resnet_size,
                                resnet_version=self.version,
                                # The official model dtype seems to be ignored,
                                # as the dtype it uses is the dtype of the input
                                # images. Doesn't hurt to set it though.
                                dtype=data_type)
    logits = model_class(images, phase_train)
    logits = tf.cast(logits, tf.float32)
    return model_lib.BuildNetworkResult(logits=logits, extra_info=None) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:20,代碼來源:official_resnet_model.py

示例5: decode_jpeg

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:25,代碼來源:preprocessing.py

示例6: _run_benchmark_cnn_with_black_and_white_images

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _run_benchmark_cnn_with_black_and_white_images(self, params):
    """Runs BenchmarkCNN with black and white images.

    A BenchmarkCNN is created and run with black and white images as input. Half
    the images are black (i.e., filled with 0s) and half are white (i.e., filled
    with 255s).

    Args:
      params: Params for BenchmarkCNN.

    Returns:
      A list of lines from the output of BenchmarkCNN.
    """
    # TODO(reedwm): Instead of generating images here, use black and white
    # tfrecords by calling test_util.create_black_and_white_images().
    effective_batch_size = params.batch_size * params.num_gpus
    half_batch_size = effective_batch_size // 2
    images = np.zeros((effective_batch_size, 227, 227, 3), dtype=np.float32)
    images[half_batch_size:, :, :, :] = 255
    labels = np.array([0] * half_batch_size + [1] * half_batch_size,
                      dtype=np.int32)
    return self._run_benchmark_cnn_with_fake_images(params, images, labels) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:24,代碼來源:benchmark_cnn_test.py

示例7: testLowAccuracy

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def testLowAccuracy(self):
    params = test_util.get_params('testLowAccuracy')._replace(
        print_training_accuracy=True, batch_size=5, num_batches=10)
    # We force low accuracy by having each batch containing 10 identical images,
    # each with a different label. This guarantees a top-1 accuracy of exactly
    # 0.1 and a top-5 accuracy of exactly 0.5.
    images = np.zeros((10, 227, 227, 3), dtype=np.float32)
    labels = np.arange(10, dtype=np.int32)
    logs = self._run_benchmark_cnn_with_fake_images(params, images, labels)
    training_outputs = test_util.get_training_outputs_from_logs(
        logs, params.print_training_accuracy)
    last_output = training_outputs[-1]
    # TODO(reedwm): These should be assertEqual but for some reason,
    # occasionally the accuracies are lower (Running this test 500 times, these
    # asserts failed twice). Investigate this problem.
    self.assertLessEqual(last_output.top_1_accuracy, 0.1)
    self.assertLessEqual(last_output.top_5_accuracy, 0.5) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:19,代碼來源:benchmark_cnn_test.py

示例8: _test_preprocessing_traing

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _test_preprocessing_traing(self, image_buf, image_color,
                                 output_height, output_width, bbox,
                                 batch_position, resize_method, distortions,
                                 summary_verbosity, fuse_decode_and_crop):
    new_image = preprocessing.train_image(
        image_buf,
        output_height,
        output_width,
        bbox,
        batch_position,
        resize_method,
        distortions,
        summary_verbosity=summary_verbosity,
        fuse_decode_and_crop=fuse_decode_and_crop)
    self.assertEqual(new_image.shape, [output_height, output_width, 3])
    with self.test_session(use_gpu=True) as sess:
      new_image_value = sess.run(new_image)
    self.assertAllClose(
        new_image_value,
        np.full(
            [output_height, output_width, 3],
            image_color,
            dtype=np.float32),
        atol=50.,
        rtol=0.) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:27,代碼來源:benchmark_cnn_test.py

示例9: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def __init__(self,
               input_op,
               input_nchan,
               phase_train,
               use_tf_layers,
               data_format='NCHW',
               dtype=tf.float32,
               variable_dtype=tf.float32):
    self.top_layer = input_op
    self.top_size = input_nchan
    self.phase_train = phase_train
    self.use_tf_layers = use_tf_layers
    self.data_format = data_format
    self.dtype = dtype
    self.variable_dtype = variable_dtype
    self.counts = defaultdict(lambda: 0)
    self.use_batch_norm = False
    self.batch_norm_config = {}  # 'decay': 0.997, 'scale': True}
    self.channel_pos = ('channels_last'
                        if data_format == 'NHWC' else 'channels_first')
    self.aux_top_layer = None
    self.aux_top_size = 0 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:24,代碼來源:convnet_builder.py

示例10: _maybe_initialize_fp16

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _maybe_initialize_fp16(self):
    """Initialize fp16 settings."""
    if self.params.use_fp16 and not self._doing_eval:
      init_loss_scale_val = float(self.params.fp16_loss_scale or
                                  self.model.get_fp16_loss_scale())
      self.loss_scale = None
      self.loss_scale_normal_steps = None
      if self.enable_auto_loss_scale or init_loss_scale_val != 1:
        self.loss_scale = tf.get_variable(
            name='loss_scale',
            initializer=init_loss_scale_val,
            dtype=tf.float32,
            trainable=False)
      if self.enable_auto_loss_scale:
        self.loss_scale_normal_steps = tf.get_variable(
            name='loss_scale_normal_steps', initializer=0, trainable=False) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:benchmark_cnn.py

示例11: _ensure_keep_mask

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _ensure_keep_mask(self, x):
    if self._keep_mask is None or not self._share_mask:
      shape = tf.shape(x)
      k = shape[1]
      # To make this class a drop-in replacement for bernoulli dropout we
      # paramaterize it with keep_prob. Set alpha of the dirichlet so that the
      # variance is equal to the variance of the bernoulli with p=keep_prob
      # divided by keep_prob.
      # Now the variance of the dirichlet with k equal alphas is
      # (k-1)/(k^2(k*alpha+1). Solve that for alpha.
      kf = tf.cast(k, tf.float32)
      alpha = self._keep_prob * (kf - 1.0) / ((1-self._keep_prob)*kf) - 1.0/kf
      dist = tfp.distributions.Dirichlet(tf.ones(shape=k) * alpha)
      assert (dist.reparameterization_type ==
              tfp.distributions.FULLY_REPARAMETERIZED)
      # The E[dir(alpha)] = 1/k for all elements, but we want the expectation to
      # be keep_prob, hence the multiplication.
      self._keep_mask = kf * dist.sample(shape[0])
      self._keep_mask.set_shape(x.get_shape())
    return self._keep_mask 
開發者ID:deepmind,項目名稱:lamb,代碼行數:22,代碼來源:dropout.py

示例12: compute_logits

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def compute_logits(self, token_ids: tf.Tensor) -> tf.Tensor:
        """
        Implements a language model, where each output is conditional on the current
        input and inputs processed so far.

        Args:
            token_ids: int32 tensor of shape [B, T], storing integer IDs of tokens.

        Returns:
            tf.float32 tensor of shape [B, T, V], storing the distribution over output symbols
            for each timestep for each batch element.
        """
        # TODO 5# 1) Embed tokens
        # TODO 5# 2) Run RNN on embedded tokens
        # TODO 5# 3) Project RNN outputs onto the vocabulary to obtain logits.
        return rnn_output_logits 
開發者ID:microsoft,項目名稱:machine-learning-for-programming-samples,代碼行數:18,代碼來源:model_tf1.py

示例13: calculate_generalized_advantage_estimator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  # pylint: disable=g-doc-args
  """Generalized advantage estimator.

  Returns:
    GAE estimator. It will be one element shorter than the input; this is
    because to compute GAE for [0, ..., N-1] one needs V for [1, ..., N].
  """
  # pylint: enable=g-doc-args

  next_value = value[1:, :]
  next_not_done = 1 - tf.cast(done[1:, :], tf.float32)
  delta = (reward[:-1, :] + gae_gamma * next_value * next_not_done
           - value[:-1, :])

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:ppo.py

示例14: _rollout_metadata

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def _rollout_metadata(batch_env, distributional_size=1):
  """Metadata for rollouts."""
  batch_env_shape = batch_env.observ.get_shape().as_list()
  batch_size = [batch_env_shape[0]]
  value_size = batch_size
  if distributional_size > 1:
    value_size = batch_size + [distributional_size]
  shapes_types_names = [
      # TODO(piotrmilos): possibly retrieve the observation type for batch_env
      (batch_size + batch_env_shape[1:], batch_env.observ_dtype, "observation"),
      (batch_size, tf.float32, "reward"),
      (batch_size, tf.bool, "done"),
      (batch_size + list(batch_env.action_shape), batch_env.action_dtype,
       "action"),
      (batch_size, tf.float32, "pdf"),
      (value_size, tf.float32, "value_function"),
  ]
  return shapes_types_names 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:ppo_learner.py

示例15: rouge_2_fscore

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import float32 [as 別名]
def rouge_2_fscore(predictions, labels, **unused_kwargs):
  """ROUGE-2 F1 score computation between labels and predictions.

  This is an approximate ROUGE scoring method since we do not glue word pieces
  or decode the ids and tokenize the output.

  Args:
    predictions: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    rouge2_fscore: approx rouge-2 f1 score.
  """

  outputs = tf.to_int32(tf.argmax(predictions, axis=-1))
  # Convert the outputs and labels to a [batch_size, input_length] tensor.
  outputs = tf.squeeze(outputs, axis=[-1, -2])
  labels = tf.squeeze(labels, axis=[-1, -2])
  rouge_2_f_score = tf.py_func(rouge_n, (outputs, labels), tf.float32)
  return rouge_2_f_score, tf.constant(1.0) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:rouge.py


注:本文中的tensorflow.compat.v1.float32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。