本文整理匯總了Python中tensorflow.compat.v1.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.expand_dims方法的具體用法?Python v1.expand_dims怎麽用?Python v1.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _distort_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def _distort_image(self, image):
"""Distort one image for training a network.
Adopted the standard data augmentation scheme that is widely used for
this dataset: the images are first zero-padded with 4 pixels on each side,
then randomly cropped to again produce distorted images; half of the images
are then horizontally mirrored.
Args:
image: input image.
Returns:
distorted image.
"""
image = tf.image.resize_image_with_crop_or_pad(
image, self.height + 8, self.width + 8)
distorted_image = tf.random_crop(image,
[self.height, self.width, self.depth])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
if self.summary_verbosity >= 3:
tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))
return distorted_image
示例2: mask_from_lengths
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def mask_from_lengths(lengths, max_length=None, dtype=None, name=None):
"""Convert a length scalar to a vector of binary masks.
This function will convert a vector of lengths to a matrix of binary masks.
E.g. [2, 4, 3] will become [[1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 0]]
Args:
lengths: a d-dimensional vector of integers corresponding to lengths.
max_length: an optional (default: None) scalar-like or 0-dimensional tensor
indicating the maximum length of the masks. If not provided, the maximum
length will be inferred from the lengths vector.
dtype: the dtype of the returned mask, if specified. If None, the dtype of
the lengths will be used.
name: a name for the operation (optional).
Returns:
A d x max_length tensor of binary masks (int32).
"""
with tf.name_scope(name, 'mask_from_lengths'):
dtype = lengths.dtype if dtype is None else dtype
max_length = tf.reduce_max(lengths) if max_length is None else max_length
indexes = tf.range(max_length, dtype=lengths.dtype)
mask = tf.less(tf.expand_dims(indexes, 0), tf.expand_dims(lengths, 1))
cast_mask = tf.cast(mask, dtype)
return tf.stop_gradient(cast_mask)
示例3: simulate
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def simulate(self, action):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
new_observ = tf.expand_dims(self._batch_env.observ, axis=1)
# If we shouldn't stack, i.e. self.history == 1, then just assign
# new_observ to self._observ and return from here.
if self.history == 1:
with tf.control_dependencies([self._observ.assign(new_observ)]):
return tf.identity(reward), tf.identity(done)
# If we should stack, then do the required work.
old_observ = tf.gather(
self._observ.read_value(),
list(range(1, self.history)),
axis=1)
with tf.control_dependencies([new_observ, old_observ]):
with tf.control_dependencies([self._observ.assign(
tf.concat([old_observ, new_observ], axis=1))]):
return tf.identity(reward), tf.identity(done)
示例4: testPrefixAccuracy
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def testPrefixAccuracy(self):
vocab_size = 10
predictions = tf.one_hot(
tf.constant([[[1], [2], [3], [4], [9], [6], [7], [8]],
[[1], [2], [3], [4], [5], [9], [7], [8]],
[[1], [2], [3], [4], [5], [9], [7], [0]]]),
vocab_size)
labels = tf.expand_dims(
tf.constant([[[1], [2], [3], [4], [5], [6], [7], [8]],
[[1], [2], [3], [4], [5], [6], [7], [8]],
[[1], [2], [3], [4], [5], [6], [7], [0]]]),
axis=-1)
expected_accuracy = np.average([4.0 / 8.0,
5.0 / 8.0,
5.0 / 7.0])
accuracy, _ = metrics.prefix_accuracy(predictions, labels)
with self.test_session() as session:
accuracy_value = session.run(accuracy)
self.assertAlmostEqual(expected_accuracy, accuracy_value)
示例5: testSigmoidAccuracyOneHot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def testSigmoidAccuracyOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[-1., 1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[1, 0],
[1, 0],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_accuracy_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.5)
示例6: testSigmoidPrecisionOneHot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def testSigmoidPrecisionOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[0, 1],
[0, 1],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_precision_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.25)
示例7: testSigmoidRecallOneHot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def testSigmoidRecallOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[0, 1],
[0, 1],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_recall_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertEqual(s, 0.25)
示例8: testSigmoidCrossEntropyOneHot
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def testSigmoidCrossEntropyOneHot(self):
logits = np.array([
[-1., 1.],
[1., -1.],
[1., -1.],
[1., -1.]
])
labels = np.array([
[0, 1],
[1, 0],
[0, 0],
[0, 1]
])
logits = np.expand_dims(np.expand_dims(logits, 1), 1)
labels = np.expand_dims(np.expand_dims(labels, 1), 1)
with self.test_session() as session:
score, _ = metrics.sigmoid_cross_entropy_one_hot(logits, labels)
session.run(tf.global_variables_initializer())
session.run(tf.local_variables_initializer())
s = session.run(score)
self.assertAlmostEqual(s, 0.688, places=3)
示例9: combine
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# see comments on convert_gradient_to_tensor
stitched = common_layers.convert_gradient_to_tensor(
tf.concat(expert_out, 0))
if multiply_by_gates:
stitched *= tf.expand_dims(self._nonzero_gates, 1)
combined = tf.unsorted_segment_sum(stitched, self._batch_index,
tf.shape(self._gates)[0])
return combined
示例10: standardize_shapes
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def standardize_shapes(features, batch_size=None):
"""Set the right shapes for the features."""
for fname in ["inputs", "targets"]:
if fname not in features:
continue
f = features[fname]
while len(f.get_shape()) < 4:
f = tf.expand_dims(f, axis=-1)
features[fname] = f
if batch_size:
# Ensure batch size is set on all features
for _, t in six.iteritems(features):
shape = t.get_shape().as_list()
shape[0] = batch_size
t.set_shape(t.get_shape().merge_with(shape))
# Assert shapes are fully known
t.get_shape().assert_is_fully_defined()
return features
示例11: body
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def body(self, features):
hparams = self._hparams
inputs = features["inputs"]
target_space = features["target_space_id"]
inputs = common_layers.flatten4d3d(inputs)
(encoder_input, encoder_self_attention_bias, _) = (
transformer_prepare_encoder(inputs, target_space, hparams))
encoder_input = tf.nn.dropout(encoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
encoder_output = transformer_encoder(
encoder_input,
encoder_self_attention_bias,
hparams,
nonpadding=features_to_nonpadding(features, "inputs"))
encoder_output = tf.expand_dims(encoder_output, 2)
return encoder_output
示例12: initialize_write_strengths
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def initialize_write_strengths(self, batch_size):
"""Initialize write strengths to write to the first memory address.
This is exposed as its own function so that it can be overridden to provide
alternate write adressing schemes.
Args:
batch_size: The size of the current batch.
Returns:
A tf.float32 tensor of shape [num_write_heads, memory_size, 1] where the
first element in the second dimension is set to 1.0.
"""
return tf.expand_dims(
tf.one_hot([[0] * self._num_write_heads] * batch_size,
depth=self._memory_size, dtype=tf.float32), axis=3)
示例13: get_read_mask
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def get_read_mask(self, read_head_index):
"""Creates a mask which allows us to attenuate subsequent read strengths.
This is exposed as its own function so that it can be overridden to provide
alternate read adressing schemes.
Args:
read_head_index: Identifies which read head we're getting the mask for.
Returns:
A tf.float32 tensor of shape [1, 1, memory_size, memory_size]
"""
if read_head_index == 0:
return tf.expand_dims(
common_layers.mask_pos_lt(self._memory_size, self._memory_size),
axis=0)
else:
raise ValueError("Read head index must be 0 for stack.")
示例14: decode_transformer
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def decode_transformer(encoder_output, encoder_decoder_attention_bias, targets,
hparams, name):
"""Original Transformer decoder."""
with tf.variable_scope(name):
targets = common_layers.flatten4d3d(targets)
decoder_input, decoder_self_bias = (
transformer.transformer_prepare_decoder(targets, hparams))
decoder_input = tf.nn.dropout(decoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
decoder_output = transformer.transformer_decoder(
decoder_input, encoder_output, decoder_self_bias,
encoder_decoder_attention_bias, hparams)
decoder_output = tf.expand_dims(decoder_output, axis=2)
decoder_output_shape = common_layers.shape_list(decoder_output)
decoder_output = tf.reshape(
decoder_output, [decoder_output_shape[0], -1, 1, hparams.hidden_size])
# Expand since t2t expects 4d tensors.
return decoder_output
示例15: body
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import expand_dims [as 別名]
def body(self, features):
observations = features["inputs_raw"]
observations = tf.cast(observations, tf.float32)
flat_observations = tf.layers.flatten(observations)
with tf.variable_scope("policy"):
x = flat_observations
for size in self.hparams.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
logits = tf.layers.dense(x, self.hparams.problem.num_actions)
logits = tf.expand_dims(logits, axis=1)
with tf.variable_scope("value"):
x = flat_observations
for size in self.hparams.value_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
value = tf.layers.dense(x, 1)
logits = clip_logits(logits, self.hparams)
return {"target_policy": logits, "target_value": value}