當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.executing_eagerly方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.executing_eagerly方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.executing_eagerly方法的具體用法?Python v1.executing_eagerly怎麽用?Python v1.executing_eagerly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.executing_eagerly方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_run_in_graph_and_eager_modes

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def test_run_in_graph_and_eager_modes(self):
    l = []
    def inc(self, with_brackets):
      del self  # self argument is required by run_in_graph_and_eager_modes.
      mode = "eager" if tf.executing_eagerly() else "graph"
      with_brackets = "with_brackets" if with_brackets else "without_brackets"
      l.append((with_brackets, mode))

    f = test_utils.run_in_graph_and_eager_modes(inc)
    f(self, with_brackets=False)
    f = test_utils.run_in_graph_and_eager_modes()(inc)
    f(self, with_brackets=True)

    self.assertEqual(len(l), 4)
    self.assertEqual(set(l), {
        ("with_brackets", "graph"),
        ("with_brackets", "eager"),
        ("without_brackets", "graph"),
        ("without_brackets", "eager"),
    }) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:test_utils_test.py

示例2: test_run_in_graph_and_eager_modes_setup_in_same_mode

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def test_run_in_graph_and_eager_modes_setup_in_same_mode(self):
    modes = []
    mode_name = lambda: "eager" if tf.executing_eagerly() else "graph"

    class ExampleTest(tf.test.TestCase):

      def runTest(self):
        pass

      def setUp(self):
        modes.append("setup_" + mode_name())

      @test_utils.run_in_graph_and_eager_modes
      def testBody(self):
        modes.append("run_" + mode_name())

    e = ExampleTest()
    e.setUp()
    e.testBody()

    self.assertEqual(modes[0:2], ["setup_eager", "run_eager"])
    self.assertEqual(modes[2:], ["setup_graph", "run_graph"]) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:test_utils_test.py

示例3: remove

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def remove(self, x):
    """Remove padding from the given tensor.

    Args:
      x (tf.Tensor): of shape [dim_origin,...]

    Returns:
      a tensor of shape [dim_compressed,...] with dim_compressed <= dim_origin
    """
    with tf.name_scope("pad_reduce/remove"):
      x_shape = x.get_shape().as_list()
      x = tf.gather_nd(
          x,
          indices=self.nonpad_ids,
      )
      if not tf.executing_eagerly():
        # This is a hack but for some reason, gather_nd return a tensor of
        # undefined shape, so the shape is set up manually
        x.set_shape([None] + x_shape[1:])
    return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:expert_utils.py

示例4: summarize_video

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def summarize_video(video, prefix, max_outputs=1):
  """Summarize the video using image summaries starting with prefix."""
  video_shape = shape_list(video)
  if len(video_shape) != 5:
    raise ValueError("Assuming videos given as tensors in the format "
                     "[batch, time, height, width, channels] but got one "
                     "of shape: %s" % str(video_shape))
  if tf.executing_eagerly():
    return
  if video.get_shape().as_list()[1] is None:
    tf.summary.image(
        "%s_last_frame" % prefix,
        tf.cast(video[:, -1, :, :, :], tf.uint8),
        max_outputs=max_outputs)
  else:
    for k in range(video_shape[1]):
      tf.summary.image(
          "%s_frame_%d" % (prefix, k),
          tf.cast(video[:, k, :, :, :], tf.uint8),
          max_outputs=max_outputs) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:common_layers.py

示例5: softmax

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def softmax(logits, scope=None):
  """Performs softmax on Nth dimension of N-dimensional logit tensor.

  For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
  needs to have a specified number of elements (number of classes).

  Args:
    logits: N-dimensional `Tensor` with logits, where N > 1.
    scope: Optional scope for variable_scope.

  Returns:
    A `Tensor` with same shape and type as logits.
  """
  with variable_scope.variable_scope(scope, 'softmax', [logits]):
    num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
    logits_2d = array_ops.reshape(logits, [-1, num_logits])
    predictions = nn.softmax(logits_2d)
    predictions = array_ops.reshape(predictions, array_ops.shape(logits))
    if not tf.executing_eagerly():
      predictions.set_shape(logits.get_shape())
    return predictions 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:23,代碼來源:layers.py

示例6: _get_weights

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def _get_weights(model_hparams, vocab_size, hidden_dim=None):
  """Copied from tensor2tensor/layers/modalities.py but uses total vocab."""
  if hidden_dim is None:
    hidden_dim = model_hparams.hidden_size
  num_shards = model_hparams.symbol_modality_num_shards
  shards = []
  for i in range(num_shards):
    shard_size = (sum(vocab_size) // num_shards) + (
        1 if i < sum(vocab_size) % num_shards else 0)
    var_name = 'weights_%d' % i
    shards.append(
        tf.get_variable(
            var_name, [shard_size, hidden_dim],
            initializer=tf.random_normal_initializer(0.0, hidden_dim**-0.5)))
  if num_shards == 1:
    ret = shards[0]
  else:
    ret = tf.concat(shards, 0)
  # Convert ret to tensor.
  if not tf.executing_eagerly():
    ret = common_layers.convert_gradient_to_tensor(ret)
  return ret 
開發者ID:magenta,項目名稱:magenta,代碼行數:24,代碼來源:modalities.py

示例7: pretrained_visual_encoder

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def pretrained_visual_encoder(self, features, hparams):
    # we want the exact hparams used for training this vv
    vae_hparams = trainer_lib.create_hparams(
        hparams.vae_hparam_set, hparams.vae_hparams,
        data_dir=hparams.vae_data_dir, problem_name=hparams.vae_problem)

    # go back to root variable scope
    with tf.variable_scope(tf.VariableScope(tf.AUTO_REUSE, ''),
                           reuse=tf.AUTO_REUSE, auxiliary_name_scope=False):
      vae = image_vae.ImageVAE(vae_hparams, mode=self._hparams.mode,
                               problem_hparams=vae_hparams.problem_hparams)
      # the real input to vae will be features['rendered_targets']
      vae_features = copy.copy(features)
      vae_features['inputs'] = tf.reshape(vae_features['targets_psr'][:, -1, :],
                                          [-1, 64, 64, 1])
      vae_features['targets'] = vae_features['inputs']
      # we want vae to return bottleneck
      vae_features['bottleneck'] = tf.zeros((0, 128))
      sampled_bottleneck, _ = vae(vae_features)
      vae.initialize_from_ckpt(hparams.vae_ckpt_dir)

      if tf.executing_eagerly():
        sampled_bottleneck, _ = vae(vae_features)

    return sampled_bottleneck 
開發者ID:magenta,項目名稱:magenta,代碼行數:27,代碼來源:svg_decoder.py

示例8: inference_network_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def inference_network_fn(self,
                           features,
                           labels,
                           mode,
                           config=None,
                           params=None):
    """See base class documentation."""
    del mode, config, params
    if not self._model:
      self._build_model()

    if self._multi_dataset:
      if tf.executing_eagerly():
        x1 = tf.convert_to_tensor(features.x1)
        x2 = tf.convert_to_tensor(features.x2)
      else:
        x1 = features.x1
        x2 = features.x2
      net = x1 + x2
    else:
      net = features.x

    net = self._model(net)
    return dict(logits=net) 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:26,代碼來源:mocks.py

示例9: call

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def call(self, inputs):
    inputs = tf.convert_to_tensor(inputs)
    rank = tf.rank(inputs)
    if rank > 2:
      outputs = tf.einsum("aki,aij->akj", inputs, self.kernel)

      # Reshape the output back to the original ndim of the input.
      if not tf.executing_eagerly():
        shape = inputs.get_shape().as_list()
        output_shape = shape[:-1] + [self.units]
        outputs.set_shape(output_shape)
    else:
      assert False
      # outputs = tf.mat_mul(inputs, self.kernel)
    if self.use_bias:
      outputs = tf.nn.bias_add(outputs, self.bias)
    if self.activation is not None:
      return self.activation(outputs)  # pylint: disable=not-callable
    return outputs 
開發者ID:google-research,項目名稱:language,代碼行數:21,代碼來源:linear.py

示例10: get_global_variables_safely

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def get_global_variables_safely():
  """If not executing eagerly, returns tf.global_variables().

  Raises a ValueError if eager execution is enabled,
  because the variables are not tracked when executing eagerly.

  If executing eagerly, use a Keras model's .variables property instead.

  Returns:
    The result of tf.global_variables()
  """
  with tf.init_scope():
    if tf.executing_eagerly():
      raise ValueError("Global variables collection is not tracked when "
                       "executing eagerly. Use a Keras model's `.variables` "
                       "attribute instead.")
  return tf.global_variables() 
開發者ID:tensorflow,項目名稱:models,代碼行數:19,代碼來源:variables_helper.py

示例11: get_variable_initializer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def get_variable_initializer(hparams):
  """Get variable initializer from hparams."""
  if not hparams.initializer:
    return None

  mlperf_log.transformer_print(key=mlperf_log.MODEL_HP_INITIALIZER_GAIN,
                               value=hparams.initializer_gain,
                               hparams=hparams)

  if not tf.executing_eagerly():
    tf.logging.info("Using variable initializer: %s", hparams.initializer)
  if hparams.initializer == "orthogonal":
    return tf.orthogonal_initializer(gain=hparams.initializer_gain)
  elif hparams.initializer == "uniform":
    max_val = 0.1 * hparams.initializer_gain
    return tf.random_uniform_initializer(-max_val, max_val)
  elif hparams.initializer == "normal_unit_scaling":
    return tf.variance_scaling_initializer(
        hparams.initializer_gain, mode="fan_avg", distribution="normal")
  elif hparams.initializer == "uniform_unit_scaling":
    return tf.variance_scaling_initializer(
        hparams.initializer_gain, mode="fan_avg", distribution="uniform")
  elif hparams.initializer == "xavier":
    return tf.initializers.glorot_uniform()
  else:
    raise ValueError("Unrecognized initializer: %s" % hparams.initializer) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:28,代碼來源:optimize.py

示例12: flatten_all_but_last

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def flatten_all_but_last(a):
  """Flatten all dimensions of a except the last."""
  ret = tf.reshape(a, [-1, tf.shape(a)[-1]])
  if not tf.executing_eagerly():
    ret.set_shape([None] + a.get_shape().as_list()[-1:])
  return ret 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:8,代碼來源:expert_utils.py

示例13: _eager_log

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def _eager_log(level, *args):
  if tf.executing_eagerly() and args in _already_logged:
    return
  _already_logged.add(args)
  getattr(tf.logging, level)(*args) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:7,代碼來源:t2t_model.py

示例14: _get_beta_accumulators

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def _get_beta_accumulators(self):
    with tf.init_scope():
      if tf.executing_eagerly():
        graph = None
      else:
        graph = tf.get_default_graph()
      return (self._get_non_slot_variable("beta1_power", graph=graph),
              self._get_non_slot_variable("beta2_power", graph=graph)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:10,代碼來源:multistep_with_adamoptimizer.py

示例15: _get_iter_variable

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import executing_eagerly [as 別名]
def _get_iter_variable(self):
    graph = (None if tf.executing_eagerly() else tf.get_default_graph())
    return self._get_non_slot_variable("iter", graph=graph) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:5,代碼來源:multistep_with_adamoptimizer.py


注:本文中的tensorflow.compat.v1.executing_eagerly方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。