本文整理匯總了Python中tensorflow.compat.v1.divide方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.divide方法的具體用法?Python v1.divide怎麽用?Python v1.divide使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.divide方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: normalize_image
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def normalize_image(images):
"""Normalize image to zero mean and unit variance.
Args:
images: a tensor representing images, at least 3-D.
Returns:
images normalized by mean and stdev.
"""
data_type = images.dtype
mean = tf.constant(ssd_constants.NORMALIZATION_MEAN, data_type)
std = tf.constant(ssd_constants.NORMALIZATION_STD, data_type)
images = tf.divide(tf.subtract(images, mean), std)
mlperf.logger.log(key=mlperf.tags.DATA_NORMALIZATION_MEAN,
value=ssd_constants.NORMALIZATION_MEAN)
mlperf.logger.log(key=mlperf.tags.DATA_NORMALIZATION_STD,
value=ssd_constants.NORMALIZATION_STD)
return images
示例2: f1_metric
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def f1_metric(precision, precision_op, recall, recall_op):
"""Computes F1 based on precision and recall.
Args:
precision: <float> [batch_size]
precision_op: Update op for precision.
recall: <float> [batch_size]
recall_op: Update op for recall.
Returns:
tensor and update op for F1.
"""
f1_op = tf.group(precision_op, recall_op)
numerator = 2 * tf.multiply(precision, recall)
denominator = tf.add(precision, recall)
f1 = tf.divide(numerator, denominator)
# <float> [batch_size]
zero_vec = tf.zeros_like(f1)
is_valid = tf.greater(denominator, zero_vec)
f1 = tf.where(is_valid, x=f1, y=zero_vec)
return f1, f1_op
示例3: _compute_loss
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing the predicted logits for each class
target_tensor: A float tensor of shape [batch_size, num_anchors,
num_classes] representing one-hot encoded classification targets
weights: a float tensor of shape, either [batch_size, num_anchors,
num_classes] or [batch_size, num_anchors, 1]. If the shape is
[batch_size, num_anchors, 1], all the classses are equally weighted.
Returns:
loss: a float tensor of shape [batch_size, num_anchors]
representing the value of the loss function.
"""
weights = tf.reduce_mean(weights, axis=2)
num_classes = prediction_tensor.get_shape().as_list()[-1]
prediction_tensor = tf.divide(
prediction_tensor, self._logit_scale, name='scale_logit')
per_row_cross_ent = (tf.nn.softmax_cross_entropy_with_logits(
labels=tf.reshape(target_tensor, [-1, num_classes]),
logits=tf.reshape(prediction_tensor, [-1, num_classes])))
return tf.reshape(per_row_cross_ent, tf.shape(weights)) * weights
示例4: apply_spectral_norm
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def apply_spectral_norm(x):
"""Normalizes x using the spectral norm.
The implementation follows Algorithm 1 of
https://arxiv.org/abs/1802.05957. If x is not a 2-D Tensor, then it is
reshaped such that the number of channels (last-dimension) is the same.
Args:
x: Tensor with the last dimension equal to the number of filters.
Returns:
x: Tensor with the same shape as x normalized by the spectral norm.
assign_op: Op to be run after every step to update the vector "u".
"""
weights_shape = shape_list(x)
other, num_filters = tf.reduce_prod(weights_shape[:-1]), weights_shape[-1]
# Reshape into a 2-D matrix with outer size num_filters.
weights_2d = tf.reshape(x, (other, num_filters))
# v = Wu / ||W u||
with tf.variable_scope("u", reuse=tf.AUTO_REUSE):
u = tf.get_variable(
"u", [num_filters, 1],
initializer=tf.truncated_normal_initializer(),
trainable=False)
v = tf.nn.l2_normalize(tf.matmul(weights_2d, u))
# u_new = vW / ||v W||
u_new = tf.nn.l2_normalize(tf.matmul(tf.transpose(v), weights_2d))
# s = v*W*u
spectral_norm = tf.squeeze(
tf.matmul(tf.transpose(v), tf.matmul(weights_2d, tf.transpose(u_new))))
# set u equal to u_new in the next iteration.
assign_op = tf.assign(u, tf.transpose(u_new))
return tf.divide(x, spectral_norm), assign_op
示例5: compute_nats_and_bits_per_dim
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def compute_nats_and_bits_per_dim(data_dim,
latent_dim,
average_reconstruction,
average_prior):
"""Computes negative ELBO, which is an upper bound on the negative likelihood.
Args:
data_dim: int-like indicating data dimensionality.
latent_dim: int-like indicating latent dimensionality.
average_reconstruction: Scalar Tensor indicating the reconstruction cost
averaged over all data dimensions and any data batches.
average_prior: Scalar Tensor indicating the negative log-prior probability
averaged over all latent dimensions and any data batches.
Returns:
Tuple of scalar Tensors, representing the nats and bits per data dimension
(e.g., subpixels) respectively.
"""
with tf.name_scope(None, default_name="compute_nats_per_dim"):
data_dim = tf.cast(data_dim, average_reconstruction.dtype)
latent_dim = tf.cast(latent_dim, average_prior.dtype)
negative_log_likelihood = data_dim * average_reconstruction
negative_log_prior = latent_dim * average_prior
negative_elbo = negative_log_likelihood + negative_log_prior
nats_per_dim = tf.divide(negative_elbo, data_dim, name="nats_per_dim")
bits_per_dim = tf.divide(nats_per_dim, tf.log(2.), name="bits_per_dim")
return nats_per_dim, bits_per_dim
示例6: toy_model
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def toy_model(features, mesh):
"""A toy model implemented by mesh tensorlfow."""
batch_dim = mtf.Dimension('batch', FLAGS.batch_size)
io_dim = mtf.Dimension('io', FLAGS.io_size)
master_dtype = tf.as_dtype(FLAGS.master_dtype)
slice_dtype = tf.as_dtype(FLAGS.slice_dtype)
activation_dtype = tf.as_dtype(FLAGS.activation_dtype)
x = mtf.import_tf_tensor(mesh, features, mtf.Shape([batch_dim, io_dim]))
x = mtf.cast(x, activation_dtype)
h = x
for lnum in range(1, FLAGS.num_hidden_layers + 2):
if lnum + 1 == FLAGS.num_hidden_layers + 2:
# output layer
dim = io_dim
elif lnum % 2 == 0:
dim = mtf.Dimension('hidden_even', FLAGS.hidden_size)
else:
dim = mtf.Dimension('hidden_odd', FLAGS.hidden_size)
h = mtf.layers.dense(
h, dim,
use_bias=False,
master_dtype=master_dtype,
slice_dtype=slice_dtype,
name='layer_%d' % lnum)
y = h
g = tf.train.get_global_step()
if FLAGS.step_with_nan >= 0:
# Trigger NaN in the forward pass, this is used for testing whether
# MeshTensorFlow can handle occasional NaN value.
y += mtf.import_tf_tensor(
mesh,
tf.divide(
0.0,
tf.cond(tf.equal(g, FLAGS.step_with_nan), lambda: 0., lambda: 1.)),
mtf.Shape([]))
loss = mtf.reduce_mean(mtf.square(y - x))
return y, loss
示例7: cross_entropy_seq_with_mask
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None):
"""Returns the expression of cross-entropy of two sequences, implement
softmax internally. Normally be used for Dynamic RNN outputs.
Parameters
-----------
logits : network identity outputs
2D tensor, ``network.outputs``, [batch_size, number of output units].
target_seqs : int of tensor, like word ID.
[batch_size, ?]
input_mask : the mask to compute loss
The same size with target_seqs, normally 0 and 1.
return_details : boolean
- If False (default), only returns the loss.
- If True, returns the loss, losses, weights and targets (reshape to one vetcor).
Examples
--------
- see Image Captioning Example.
"""
targets = tf.reshape(target_seqs, [-1]) # to one vector
weights = tf.to_float(tf.reshape(input_mask, [-1])) # to one vector like targets
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name) * weights
#losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others
try: ## TF1.0
loss = tf.divide(tf.reduce_sum(losses), # loss from mask. reduce_sum before element-wise mul with mask !!
tf.reduce_sum(weights),
name="seq_loss_with_mask")
except: ## TF0.12
loss = tf.div(tf.reduce_sum(losses), # loss from mask. reduce_sum before element-wise mul with mask !!
tf.reduce_sum(weights),
name="seq_loss_with_mask")
if return_details:
return loss, losses, weights, targets
else:
return loss
示例8: norm_boxes_graph
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def norm_boxes_graph(boxes, shape):
"""Converts boxes from pixel coordinates to normalized coordinates.
boxes: [..., (y1, x1, y2, x2)] in pixel coordinates
shape: [..., (height, width)] in pixels
Note: In pixel coordinates (y2, x2) is outside the box. But in normalized
coordinates it's inside the box.
Returns:
[..., (y1, x1, y2, x2)] in normalized coordinates
"""
h, w = tf.split(tf.cast(shape, tf.float32), 2)
scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)
shift = tf.constant([0., 0., 1., 1.])
return tf.divide(boxes - shift, scale)
示例9: _scale_and_softmax_logits
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import divide [as 別名]
def _scale_and_softmax_logits(self, logits):
"""Scale logits then apply softmax."""
scaled_logits = tf.divide(logits, self._logit_scale, name='scale_logits')
return tf.nn.softmax(scaled_logits, name='convert_scores')