本文整理匯總了Python中tensorflow.compat.v1.cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.cumsum方法的具體用法?Python v1.cumsum怎麽用?Python v1.cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.cumsum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _distributional_to_value
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def _distributional_to_value(value_d, size, subscale, threshold):
"""Get a scalar value out of a value distribution in distributional RL."""
half = size // 2
value_range = (tf.to_float(tf.range(-half, half)) + 0.5) * subscale
probs = tf.nn.softmax(value_d)
if threshold == 0.0:
return tf.reduce_sum(probs * value_range, axis=-1)
# accumulated_probs[..., i] is the sum of probabilities in buckets upto i
# so it is the probability that value <= i'th bucket value
accumulated_probs = tf.cumsum(probs, axis=-1)
# New probs are 0 on all lower buckets, until the threshold
probs = tf.where(accumulated_probs < threshold, tf.zeros_like(probs), probs)
probs /= tf.reduce_sum(probs, axis=-1, keepdims=True) # Re-normalize.
return tf.reduce_sum(probs * value_range, axis=-1)
示例2: _compute_auxiliary_structure
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def _compute_auxiliary_structure(self, contents_and_mask):
"""Compute segment and position metadata."""
contents = contents_and_mask[:, :self._num_sequences]
start_mask = tf.cast(contents_and_mask[:, self._num_sequences:],
dtype=INDEX_DTYPE)
segment = tf.cumsum(start_mask, axis=0)
uniform_count = tf.ones_like(segment[:, 0])
position = []
for i in range(self._num_sequences):
segment_slice = segment[:, i]
counts = tf.math.segment_sum(uniform_count, segment[:, i])
position.append(tf.range(self._packed_length) - tf.cumsum(
tf.gather(counts, segment_slice - 1) * start_mask[:, i]))
position = tf.concat([i[:, tf.newaxis] for i in position], axis=1)
# Correct for padding tokens.
pad_mask = tf.cast(tf.not_equal(contents, 0), dtype=INDEX_DTYPE)
segment *= pad_mask
position *= pad_mask
return segment, position
示例3: unwrap
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def unwrap(p, discont=np.pi, axis=-1):
"""Unwrap a cyclical phase tensor.
Args:
p: Phase tensor.
discont: Float, size of the cyclic discontinuity.
axis: Axis of which to unwrap.
Returns:
unwrapped: Unwrapped tensor of same size as input.
"""
dd = diff(p, axis=axis)
ddmod = tf.mod(dd + np.pi, 2.0 * np.pi) - np.pi
idx = tf.logical_and(tf.equal(ddmod, -np.pi), tf.greater(dd, 0))
ddmod = tf.where(idx, tf.ones_like(ddmod) * np.pi, ddmod)
ph_correct = ddmod - dd
idx = tf.less(tf.abs(dd), discont)
ddmod = tf.where(idx, tf.zeros_like(ddmod), dd)
ph_cumsum = tf.cumsum(ph_correct, axis=axis)
shape = p.get_shape().as_list()
shape[axis] = 1
ph_cumsum = tf.concat([tf.zeros(shape, dtype=p.dtype), ph_cumsum], axis=axis)
unwrapped = p + ph_cumsum
return unwrapped
示例4: specgrams_to_stfts
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def specgrams_to_stfts(self, specgrams):
"""Converts specgrams to stfts.
Args:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
Returns:
stfts: Complex64 tensor of stft, shape [batch, time, freq, 1].
"""
logmag = specgrams[:, :, :, 0]
p = specgrams[:, :, :, 1]
mag = tf.exp(logmag)
if self._ifreq:
phase_angle = tf.cumsum(p * np.pi, axis=-2)
else:
phase_angle = p * np.pi
return spectral_ops.polar2rect(mag, phase_angle)[:, :, :, tf.newaxis]
示例5: clean_decodes
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def clean_decodes(ids, eos_id=1, pad_id=0, length_axis=-1):
"""Replaces everything after EOS with PAD (along last axis).
Args:
ids: a d Tensor of type int.
eos_id: int, EOS id.
pad_id: int, PAD id.
length_axis: an integer.
Returns:
a Tensor of type int of ids.
"""
eos_and_after = tf.cumsum(tf.cast(tf.equal(ids, eos_id), tf.int32),
exclusive=True, axis=length_axis)
valid_ids = tf.equal(eos_and_after, 0)
return tf.where_v2(valid_ids, ids, pad_id)
示例6: safe_cumprod
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def safe_cumprod(x, *args, **kwargs):
"""Computes cumprod of x in logspace using cumsum to avoid underflow.
The cumprod function and its gradient can result in numerical instabilities
when its argument has very small and/or zero values. As long as the argument
is all positive, we can instead compute the cumulative product as
exp(cumsum(log(x))). This function can be called identically to tf.cumprod.
Args:
x: Tensor to take the cumulative product of.
*args: Passed on to cumsum; these are identical to those in cumprod.
**kwargs: Passed on to cumsum; these are identical to those in cumprod.
Returns:
Cumulative product of x.
"""
with tf.name_scope(None, "SafeCumprod", [x]):
x = tf.convert_to_tensor(x, name="x")
tiny = np.finfo(x.dtype.as_numpy_dtype).tiny
return tf.exp(
tf.cumsum(tf.log(tf.clip_by_value(x, tiny, 1)), *args, **kwargs))
示例7: permute_noise_tokens
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def permute_noise_tokens(tokens, noise_mask, unused_vocabulary):
"""Permute the noise tokens, keeping the non-noise tokens where they are.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
unused_vocabulary: a vocabulary.Vocabulary
Returns:
a Tensor with the same shape and dtype as tokens
"""
masked_only = tf.boolean_mask(tokens, noise_mask)
permuted = tf.random.shuffle(masked_only)
# pad to avoid errors when it has size 0
permuted = tf.pad(permuted, [[0, 1]])
indices = tf.cumsum(tf.cast(noise_mask, tf.int32), exclusive=True)
return tf.where_v2(noise_mask,
tf.gather(permuted, indices),
tokens)
示例8: gather
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def gather(params, indices, dtype=tf.float32):
"""Version of tf.gather that works faster on tpu."""
if not is_xla_compiled():
return tf.gather(params, indices)
vocab_size = params.get_shape().as_list()[0]
indices_flat = tf.reshape(indices, [-1])
out = tf.matmul(tf.one_hot(indices_flat, vocab_size, dtype=dtype), params)
out = reshape_like(out, tf.expand_dims(indices, -1))
return out
# TODO(noam): remove this function after TPUs do cumsum faster.
示例9: cumsum
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def cumsum(x, axis=0, exclusive=False):
"""TPU hack for tf.cumsum.
This is equivalent to tf.cumsum and is faster on TPU as of 04/2018 unless
the axis dimension is very large.
Args:
x: a Tensor
axis: an integer
exclusive: a boolean
Returns:
Tensor of the same shape as x.
"""
if not is_xla_compiled():
return tf.cumsum(x, axis=axis, exclusive=exclusive)
x_shape = shape_list(x)
rank = len(x_shape)
length = x_shape[axis]
my_range = tf.range(length)
comparator = tf.less if exclusive else tf.less_equal
mask = tf.cast(
comparator(tf.expand_dims(my_range, 1), tf.expand_dims(my_range, 0)),
x.dtype)
ret = tf.tensordot(x, mask, axes=[[axis], [0]])
if axis != rank - 1:
ret = tf.transpose(
ret,
list(range(axis)) + [rank - 1] + list(range(axis, rank - 1)))
return ret
示例10: weights_prepend_inputs_to_targets
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def weights_prepend_inputs_to_targets(labels):
"""Assign weight 1.0 to only the "targets" portion of the labels.
Weight 1.0 is assigned to all nonzero labels past the first zero.
See prepend_mode in common_hparams.py
Args:
labels: A Tensor of int32s.
Returns:
A Tensor of floats.
"""
past_first_zero = tf.cumsum(to_float(tf.equal(labels, 0)), axis=1)
nonzero = to_float(labels)
return to_float(tf.not_equal(past_first_zero * nonzero, 0))
示例11: weights_multi_problem_all
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def weights_multi_problem_all(labels, taskid=-1):
"""Assign weight 1.0 to only examples from the given task."""
taskid = check_nonnegative(taskid)
weights = to_float(tf.not_equal(labels, 0))
past_taskid = tf.cumsum(to_float(tf.equal(labels, taskid)), axis=1)
# Additionally zero out the task id location
past_taskid *= to_float(tf.not_equal(labels, taskid))
non_taskid = to_float(labels)
example_mask = to_float(tf.not_equal(past_taskid * non_taskid, 0))
example_mask = tf.reduce_sum(example_mask, axis=1)
example_mask = to_float(
tf.greater(example_mask, tf.zeros_like(example_mask)))
return weights * tf.expand_dims(example_mask, axis=-1)
示例12: weights_concatenated
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def weights_concatenated(labels):
"""Assign weight 1.0 to the "target" part of the concatenated labels.
The labels look like:
source English I love you . ID1 target French Je t'aime . ID1 source
English the cat ID1 target French le chat ID1 source English ...
We want to assign weight 1.0 to all words in the target text (including the
ID1 end symbol), but not to the source text or the boilerplate. In the
above example, the target words that get positive weight are:
Je t'aime . ID1 le chat ID1
Args:
labels: a Tensor
Returns:
a Tensor
"""
eos_mask = tf.to_int32(tf.equal(labels, 1))
sentence_num = tf.cumsum(eos_mask, axis=1, exclusive=True)
in_target = tf.equal(tf.mod(sentence_num, 2), 1)
# first two tokens of each sentence are boilerplate.
sentence_num_plus_one = sentence_num + 1
shifted = tf.pad(sentence_num_plus_one,
[[0, 0], [2, 0], [0, 0], [0, 0]])[:, :-2, :, :]
nonboilerplate = tf.equal(sentence_num_plus_one, shifted)
ret = to_float(tf.logical_and(nonboilerplate, in_target))
return ret
示例13: specgrams_to_melspecgrams
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def specgrams_to_melspecgrams(self, specgrams):
"""Converts specgrams to melspecgrams.
Args:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
Returns:
melspecgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2], mel scaling of frequencies.
"""
if self._mel_downscale is None:
return specgrams
logmag = specgrams[:, :, :, 0]
p = specgrams[:, :, :, 1]
mag2 = tf.exp(2.0 * logmag)
phase_angle = tf.cumsum(p * np.pi, axis=-2)
l2mel = tf.to_float(self._linear_to_mel_matrix())
logmelmag2 = self._safe_log(tf.tensordot(mag2, l2mel, 1))
mel_phase_angle = tf.tensordot(phase_angle, l2mel, 1)
mel_p = spectral_ops.instantaneous_frequency(mel_phase_angle)
return tf.concat(
[logmelmag2[:, :, :, tf.newaxis], mel_p[:, :, :, tf.newaxis]], axis=-1)
示例14: melspecgrams_to_specgrams
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def melspecgrams_to_specgrams(self, melspecgrams):
"""Converts melspecgrams to specgrams.
Args:
melspecgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2], mel scaling of frequencies.
Returns:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [batch, time, freq, 2].
"""
if self._mel_downscale is None:
return melspecgrams
logmelmag2 = melspecgrams[:, :, :, 0]
mel_p = melspecgrams[:, :, :, 1]
mel2l = tf.to_float(self._mel_to_linear_matrix())
mag2 = tf.tensordot(tf.exp(logmelmag2), mel2l, 1)
logmag = 0.5 * self._safe_log(mag2)
mel_phase_angle = tf.cumsum(mel_p * np.pi, axis=-2)
phase_angle = tf.tensordot(mel_phase_angle, mel2l, 1)
p = spectral_ops.instantaneous_frequency(phase_angle)
return tf.concat(
[logmag[:, :, :, tf.newaxis], p[:, :, :, tf.newaxis]], axis=-1)
示例15: noise_span_to_unique_sentinel
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import cumsum [as 別名]
def noise_span_to_unique_sentinel(tokens, noise_mask, vocabulary):
"""Replace each run of consecutive noise tokens with a different sentinel.
The idea here is to be able to align the dropped spans in the inputs
with the markers in the targets.
We want to generate training examples like
"We hold X to be Y that" -> "X these truths Y self evident Z"
Sentinels assigned in decreasing order within the sequence starting at
vocabulary.size - 1. That is, we appropriate the last tokens in the
vocabulary for additional use as sentinels.
TODO(noam): we may want to try enlarging the vocabulary and leaving room
for the sentinels instead. However, this requires enlarging the embedding
tables in the model, so that is a bigger change.
Args:
tokens: a 1d integer Tensor
noise_mask: a boolean Tensor with the same shape as tokens
vocabulary: a vocabulary.Vocabulary
Returns:
a Tensor with the same shape and dtype as tokens
"""
vocab_size = vocabulary.vocab_size
prev_token_is_noise = tf.pad(noise_mask[:-1], [[1, 0]])
first_noise_tokens = tf.logical_and(
noise_mask, tf.logical_not(prev_token_is_noise))
subsequent_noise_tokens = tf.logical_and(noise_mask, prev_token_is_noise)
sentinel = vocab_size - tf.cumsum(tf.cast(first_noise_tokens, tokens.dtype))
tokens = tf.where_v2(first_noise_tokens, sentinel, tokens)
return tf.boolean_mask(tokens, tf.logical_not(subsequent_noise_tokens))