本文整理匯總了Python中tensorflow.compat.v1.as_dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.as_dtype方法的具體用法?Python v1.as_dtype怎麽用?Python v1.as_dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.as_dtype方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_variable_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def get_variable_dtype(
master_dtype=tf.bfloat16,
slice_dtype=tf.float32,
activation_dtype=tf.float32):
"""Datatypes to use for the run.
Args:
master_dtype: string, datatype for checkpoints
keep this the same between training and eval/inference
slice_dtype: string, datatype for variables in memory
must be tf.float32 for training
activation_dtype: string, datatype for activations
less memory usage if tf.bfloat16 but possible numerical issues
Returns:
a mtf.VariableDtype
"""
return mtf.VariableDType(
master_dtype=tf.as_dtype(master_dtype),
slice_dtype=tf.as_dtype(slice_dtype),
activation_dtype=tf.as_dtype(activation_dtype))
示例2: _get_tf_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def _get_tf_dtype(space):
if isinstance(space, gym.spaces.Discrete):
return tf.int32
if isinstance(space, gym.spaces.Box):
return tf.as_dtype(space.dtype)
raise NotImplementedError()
示例3: master_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def master_dtype(self):
return tf.as_dtype(self._hparams.master_dtype)
示例4: slice_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def slice_dtype(self):
return tf.as_dtype(self._hparams.slice_dtype)
示例5: activation_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def activation_dtype(self):
return tf.as_dtype(self._hparams.activation_dtype)
示例6: variable_dtype
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def variable_dtype(self):
return mtf.VariableDType(
tf.as_dtype(self._hparams.master_dtype),
tf.as_dtype(self._hparams.slice_dtype),
tf.as_dtype(self._hparams.activation_dtype))
示例7: to_spec
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def to_spec(cls, instance):
if isinstance(instance, tf.Tensor):
return ExtendedTensorSpec.from_tensor(instance)
elif isinstance(instance, TSPEC):
return ExtendedTensorSpec.from_spec(instance)
elif isinstance(instance, np.ndarray):
return ExtendedTensorSpec(
shape=instance.shape, dtype=tf.as_dtype(instance.dtype),
is_extracted=True)
raise ValueError(
'We cannot convert {} with type {} to ExtendedTensorSpec'.format(
instance, type(instance)))
示例8: toy_model
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def toy_model(features, mesh):
"""A toy model implemented by mesh tensorlfow."""
batch_dim = mtf.Dimension('batch', FLAGS.batch_size)
io_dim = mtf.Dimension('io', FLAGS.io_size)
master_dtype = tf.as_dtype(FLAGS.master_dtype)
slice_dtype = tf.as_dtype(FLAGS.slice_dtype)
activation_dtype = tf.as_dtype(FLAGS.activation_dtype)
x = mtf.import_tf_tensor(mesh, features, mtf.Shape([batch_dim, io_dim]))
x = mtf.cast(x, activation_dtype)
h = x
for lnum in range(1, FLAGS.num_hidden_layers + 2):
if lnum + 1 == FLAGS.num_hidden_layers + 2:
# output layer
dim = io_dim
elif lnum % 2 == 0:
dim = mtf.Dimension('hidden_even', FLAGS.hidden_size)
else:
dim = mtf.Dimension('hidden_odd', FLAGS.hidden_size)
h = mtf.layers.dense(
h, dim,
use_bias=False,
master_dtype=master_dtype,
slice_dtype=slice_dtype,
name='layer_%d' % lnum)
y = h
g = tf.train.get_global_step()
if FLAGS.step_with_nan >= 0:
# Trigger NaN in the forward pass, this is used for testing whether
# MeshTensorFlow can handle occasional NaN value.
y += mtf.import_tf_tensor(
mesh,
tf.divide(
0.0,
tf.cond(tf.equal(g, FLAGS.step_with_nan), lambda: 0., lambda: 1.)),
mtf.Shape([]))
loss = mtf.reduce_mean(mtf.square(y - x))
return y, loss
示例9: onnx2tf
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def onnx2tf(dtype):
return tf.as_dtype(mapping.TENSOR_TYPE_TO_NP_TYPE[_onnx_dtype(dtype)])
示例10: irdft_matrix
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def irdft_matrix(shape, dtype=tf.float32):
"""Matrix for implementing kernel reparameterization with `tf.matmul`.
This can be used to represent a kernel with the provided shape in the RDFT
domain.
Example code for kernel creation, assuming 2D kernels:
```
def create_kernel(init):
shape = init.shape.as_list()
matrix = irdft_matrix(shape[:2])
init = tf.reshape(init, (shape[0] * shape[1], shape[2] * shape[3]))
init = tf.matmul(tf.transpose(matrix), init)
kernel = tf.Variable(init)
kernel = tf.matmul(matrix, kernel)
kernel = tf.reshape(kernel, shape)
return kernel
```
Args:
shape: Iterable of integers. Shape of kernel to apply this matrix to.
dtype: `dtype` of returned matrix.
Returns:
`Tensor` of shape `(prod(shape), prod(shape))` and dtype `dtype`.
"""
shape = tuple(int(s) for s in shape)
dtype = tf.as_dtype(dtype)
size = np.prod(shape)
rank = len(shape)
matrix = np.identity(size, dtype=np.float64).reshape((size,) + shape)
for axis in range(rank):
matrix = fftpack.rfft(matrix, axis=axis + 1)
slices = (rank + 1) * [slice(None)]
if shape[axis] % 2 == 1:
slices[axis + 1] = slice(1, None)
else:
slices[axis + 1] = slice(1, -1)
matrix[tuple(slices)] *= np.sqrt(2)
matrix /= np.sqrt(size)
matrix = np.reshape(matrix, (size, size))
return tf.constant(
matrix, dtype=dtype, name="irdft_" + "x".join([str(s) for s in shape]))
示例11: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import as_dtype [as 別名]
def __init__(self,
symbols_to_logits_fn,
vocab_size,
batch_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode,
dtype=tf.float32):
"""Initialize sequence beam search.
Args:
symbols_to_logits_fn: A function to provide logits, which is the
interface to the Transformer model. The passed in arguments are:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and the updated cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
updated cache -> A nested dictionary with the same structure as the
input cache.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
batch_size: An integer, the decode batch size.
beam_size: An integer, number of beams for beam search.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum number of steps to decode
a sequence.
eos_id: An integer. ID of end of sentence token.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
"""
self.symbols_to_logits_fn = symbols_to_logits_fn
self.vocab_size = vocab_size
self.batch_size = batch_size
self.beam_size = beam_size
self.alpha = alpha
self.max_decode_length = max_decode_length
self.eos_id = eos_id
self.padded_decode = padded_decode
self.dtype = tf.as_dtype(dtype)