當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.argmax方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.argmax方法的具體用法?Python v1.argmax怎麽用?Python v1.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.argmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: image_summary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def image_summary(predictions, targets, hparams):
  """Reshapes predictions and passes it to tensorboard.

  Args:
    predictions : The predicted image (logits).
    targets : The ground truth.
    hparams: model hparams.

  Returns:
    summary_proto: containing the summary images.
    weights: A Tensor of zeros of the same shape as predictions.
  """
  del hparams
  results = tf.cast(tf.argmax(predictions, axis=-1), tf.uint8)
  gold = tf.cast(targets, tf.uint8)
  summary1 = tf.summary.image("prediction", results, max_outputs=2)
  summary2 = tf.summary.image("data", gold, max_outputs=2)
  summary = tf.summary.merge([summary1, summary2])
  return summary, tf.zeros_like(predictions) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:metrics.py

示例2: sigmoid_accuracy_one_hot

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None):
  """Calculate accuracy for a set, given one-hot labels and logits.

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1, num-classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    accuracy (scalar), weights
  """
  with tf.variable_scope("sigmoid_accuracy_one_hot", values=[logits, labels]):
    del weights_fn
    predictions = tf.nn.sigmoid(logits)
    labels = tf.argmax(labels, -1)
    predictions = tf.argmax(predictions, -1)
    _, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    return accuracy, tf.constant(1.0) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:metrics.py

示例3: sigmoid_accuracy

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def sigmoid_accuracy(logits, labels, weights_fn=None):
  """Calculate accuracy for a set, given integer labels and logits.

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    accuracy (scalar), weights
  """
  with tf.variable_scope("sigmoid_accuracy", values=[logits, labels]):
    del weights_fn
    predictions = tf.nn.sigmoid(logits)
    predictions = tf.argmax(predictions, -1)
    _, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    return accuracy, tf.constant(1.0) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:metrics.py

示例4: sigmoid_precision_one_hot

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
  """Calculate precision for a set, given one-hot labels and logits.

  Predictions are converted to one-hot,
  as predictions[example][arg-max(example)] = 1

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1, num-classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    precision (scalar), weights
  """
  with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
    del weights_fn
    num_classes = logits.shape[-1]
    predictions = tf.nn.sigmoid(logits)
    predictions = tf.argmax(predictions, -1)
    predictions = tf.one_hot(predictions, num_classes)
    _, precision = tf.metrics.precision(labels=labels, predictions=predictions)
    return precision, tf.constant(1.0) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:metrics.py

示例5: roc_auc

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def roc_auc(logits, labels, weights_fn=None):
  """Calculate ROC AUC.

  Requires binary classes.

  Args:
    logits: Tensor of size [batch_size, 1, 1, num_classes]
    labels: Tensor of size [batch_size, 1, 1, num_classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    ROC AUC (scalar), weights
  """
  del weights_fn
  with tf.variable_scope("roc_auc", values=[logits, labels]):
    predictions = tf.argmax(logits, axis=-1)
    _, auc = tf.metrics.auc(labels, predictions, curve="ROC")
    return auc, tf.constant(1.0) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:metrics.py

示例6: vq_nearest_neighbor

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def vq_nearest_neighbor(x, hparams):
  """Find the nearest element in means to elements in x."""
  bottleneck_size = 2**hparams.bottleneck_bits
  means = hparams.means
  x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
  means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
  scalar_prod = tf.matmul(x, means, transpose_b=True)
  dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
  if hparams.bottleneck_kind == "em":
    x_means_idx = tf.multinomial(-dist, num_samples=hparams.num_samples)
    x_means_hot = tf.one_hot(
        x_means_idx, depth=bottleneck_size)
    x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
  else:
    x_means_idx = tf.argmax(-dist, axis=-1)
    x_means_hot = tf.one_hot(x_means_idx, depth=bottleneck_size)
  x_means = tf.matmul(x_means_hot, means)
  e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
  return x_means_hot, e_loss 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:transformer_nat.py

示例7: gumbel_sample

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def gumbel_sample(self, reconstr_gan):
    hparams = self.hparams
    is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN
    vocab_size = self._problem_hparams.vocab_size["targets"]
    if hasattr(self._hparams, "vocab_divisor"):
      vocab_size += (-vocab_size) % self._hparams.vocab_divisor
    reconstr_gan = tf.nn.log_softmax(reconstr_gan)
    if is_training and hparams.gumbel_temperature > 0.0:
      gumbel_samples = discretization.gumbel_sample(
          common_layers.shape_list(reconstr_gan))
      gumbel_samples *= hparams.gumbel_noise_factor
      reconstr_gan += gumbel_samples
      reconstr_sample = latent_layers.multinomial_sample(
          reconstr_gan, temperature=hparams.gumbel_temperature)
      reconstr_gan = tf.nn.softmax(reconstr_gan / hparams.gumbel_temperature)
    else:
      reconstr_sample = tf.argmax(reconstr_gan, axis=-1)
      reconstr_gan = tf.nn.softmax(reconstr_gan / 0.1)  # Sharpen a bit.
    # Use 1-hot forward, softmax backward.
    reconstr_hot = tf.one_hot(reconstr_sample, vocab_size)
    reconstr_gan += reconstr_hot - tf.stop_gradient(reconstr_gan)
    return reconstr_gan 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:autoencoders.py

示例8: infer

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def infer(self, features, *args, **kwargs):  # pylint: disable=arguments-differ
    """Produce predictions from the model by sampling."""
    del args, kwargs
    # Inputs and features preparation needed to handle edge cases.
    if not features:
      features = {}
    inputs_old = None
    if "inputs" in features and len(features["inputs"].shape) < 4:
      inputs_old = features["inputs"]
      features["inputs"] = tf.expand_dims(features["inputs"], 2)

    # Sample and decode.
    num_channels = self.num_channels
    if "targets" not in features:
      features["targets"] = tf.zeros(
          [self.hparams.batch_size, 1, 1, num_channels], dtype=tf.int32)
    logits, _ = self(features)  # pylint: disable=not-callable
    samples = tf.argmax(logits, axis=-1)

    # Restore inputs to not confuse Estimator in edge cases.
    if inputs_old is not None:
      features["inputs"] = inputs_old

    # Return samples.
    return samples 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:autoencoders.py

示例9: image_top

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def image_top(body_output, targets, model_hparams, vocab_size):
  """Top transformation for images."""
  del targets  # unused arg
  # TODO(lukaszkaiser): is this a universal enough way to get channels?
  num_channels = model_hparams.problem.num_channels
  with tf.variable_scope("rgb_softmax"):
    body_output_shape = common_layers.shape_list(body_output)
    reshape_shape = body_output_shape[:3]
    reshape_shape.extend([num_channels, vocab_size])
    res = tf.layers.dense(body_output, vocab_size * num_channels)
    res = tf.reshape(res, reshape_shape)
    if not tf.get_variable_scope().reuse:
      res_argmax = tf.argmax(res, axis=-1)
      tf.summary.image(
          "result",
          common_layers.tpu_safe_image_summary(res_argmax),
          max_outputs=1)
    return res 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:modalities.py

示例10: argmax_with_score

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def argmax_with_score(logits, axis=None):
  """Argmax along with the value."""
  axis = axis or len(logits.get_shape()) - 1
  predictions = tf.argmax(logits, axis=axis)

  logits_shape = shape_list(logits)
  prefix_shape, vocab_size = logits_shape[:-1], logits_shape[-1]
  prefix_size = 1
  for d in prefix_shape:
    prefix_size *= d

  # Flatten to extract scores
  flat_logits = tf.reshape(logits, [prefix_size, vocab_size])
  flat_predictions = tf.reshape(predictions, [prefix_size])
  flat_indices = tf.stack(
      [tf.range(tf.to_int64(prefix_size)),
       tf.to_int64(flat_predictions)],
      axis=1)
  flat_scores = tf.gather_nd(flat_logits, flat_indices)

  # Unflatten
  scores = tf.reshape(flat_scores, prefix_shape)

  return predictions, scores 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:common_layers.py

示例11: top_1_tpu

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def top_1_tpu(inputs):
  """find max and argmax over the last dimension.

  Works well on TPU

  Args:
    inputs: A tensor with shape [..., depth]

  Returns:
    values: a Tensor with shape [...]
    indices: a Tensor with shape [...]
  """
  inputs_max = tf.reduce_max(inputs, axis=-1, keepdims=True)
  mask = tf.to_int32(tf.equal(inputs_max, inputs))
  index = tf.range(tf.shape(inputs)[-1]) * mask
  return tf.squeeze(inputs_max, -1), tf.reduce_max(index, axis=-1) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:common_layers.py

示例12: multinomial_sample

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def multinomial_sample(x, vocab_size=None, sampling_method="random",
                       temperature=1.0):
  """Multinomial sampling from a n-dimensional tensor.

  Args:
    x: Tensor of shape [..., vocab_size]. Parameterizes logits of multinomial.
    vocab_size: Number of classes in multinomial distribution.
    sampling_method: String, "random" or otherwise deterministic.
    temperature: Positive float.

  Returns:
    Tensor of shape [...].
  """
  vocab_size = vocab_size or common_layers.shape_list(x)[-1]
  if sampling_method == "random" and temperature > 0.0:
    samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]) / temperature, 1)
  else:
    samples = tf.argmax(x, axis=-1)
  reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1])
  return reshaped_samples 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:latent_layers.py

示例13: _build_target_distribution

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def _build_target_distribution(self):
    batch_size = tf.shape(self._replay.rewards)[0]
    # size of rewards: batch_size x 1
    rewards = self._replay.rewards[:, None]
    # size of tiled_support: batch_size x num_atoms

    is_terminal_multiplier = 1. - tf.cast(self._replay.terminals, tf.float32)
    # Incorporate terminal state to discount factor.
    # size of gamma_with_terminal: batch_size x 1
    gamma_with_terminal = self.cumulative_gamma * is_terminal_multiplier
    gamma_with_terminal = gamma_with_terminal[:, None]

    # size of next_qt_argmax: 1 x batch_size
    next_qt_argmax = tf.argmax(
        self._replay_next_target_net_outputs.q_values, axis=1)[:, None]
    batch_indices = tf.range(tf.to_int64(batch_size))[:, None]
    # size of next_qt_argmax: batch_size x 2
    batch_indexed_next_qt_argmax = tf.concat(
        [batch_indices, next_qt_argmax], axis=1)
    # size of next_logits (next quantiles): batch_size x num_atoms
    next_logits = tf.gather_nd(
        self._replay_next_target_net_outputs.logits,
        batch_indexed_next_qt_argmax)
    return rewards + gamma_with_terminal * next_logits 
開發者ID:google-research,項目名稱:batch_rl,代碼行數:26,代碼來源:quantile_agent.py

示例14: _build_nominal_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def _build_nominal_loss(self, labels):
    """Build natural cross-entropy loss on clean data."""
    # Cross-entropy.
    nominal_logits = self._predictor.logits
    if self._label_smoothing > 0:
      num_classes = nominal_logits.shape[1].value
      one_hot_labels = tf.one_hot(labels, num_classes)
      smooth_positives = 1. - self._label_smoothing
      smooth_negatives = self._label_smoothing / num_classes
      one_hot_labels = one_hot_labels * smooth_positives + smooth_negatives
      nominal_cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(
          labels=one_hot_labels, logits=nominal_logits)
      self._one_hot_labels = one_hot_labels
    else:
      nominal_cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=labels, logits=nominal_logits)
    self._cross_entropy = tf.reduce_mean(nominal_cross_entropy)
    # Accuracy.
    nominal_correct_examples = tf.equal(labels, tf.argmax(nominal_logits, 1))
    self._nominal_accuracy = tf.reduce_mean(
        tf.cast(nominal_correct_examples, tf.float32)) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:23,代碼來源:loss.py

示例15: _build_attack_loss

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import argmax [as 別名]
def _build_attack_loss(self, labels):
    """Build adversarial loss using PGD attack."""
    # PGD attack.
    if not self._attack:
      self._attack_accuracy = tf.constant(0.)
      self._attack_success = tf.constant(1.)
      self._attack_cross_entropy = tf.constant(0.)
      return
    if not isinstance(self._predictor.inputs, tf.Tensor):
      raise ValueError('Multiple inputs is not supported.')
    self._attack(self._predictor.inputs, labels)
    correct_examples = tf.equal(labels, tf.argmax(self._attack.logits, 1))
    self._attack_accuracy = tf.reduce_mean(
        tf.cast(correct_examples, tf.float32))
    self._attack_success = tf.reduce_mean(
        tf.cast(self._attack.success, tf.float32))
    if self._label_smoothing > 0:
      attack_cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(
          labels=self._one_hot_labels, logits=self._attack.logits)
    else:
      attack_cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
          labels=labels, logits=self._attack.logits)
    self._attack_cross_entropy = tf.reduce_mean(attack_cross_entropy) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:25,代碼來源:loss.py


注:本文中的tensorflow.compat.v1.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。