本文整理匯總了Python中tensorflow.compat.v1.Variable方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.Variable方法的具體用法?Python v1.Variable怎麽用?Python v1.Variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.Variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testAppendGradientsWithLossScaleForNonChiefWorker
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def testAppendGradientsWithLossScaleForNonChiefWorker(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=False) # Non-chief
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=False)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 1)
self.assertEqual(sess.run(loss_scale_params.loss_scale), 4)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 10)
示例2: testAppendGradientsWithLossScaleWithoutNan
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def testAppendGradientsWithLossScaleWithoutNan(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4, dtype=tf.float32),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=True)
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=tf.constant(False))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 1)
self.assertEqual(sess.run(loss_scale_params.loss_scale), 8)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0)
示例3: testAppendGradientsWithLossScaleWithtNan
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def testAppendGradientsWithLossScaleWithtNan(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4, dtype=tf.float32),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=True)
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=tf.constant(True))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 0) # Skip updating for v.
# halve loss_scale and reset local_scale_normal_steps.
self.assertEqual(sess.run(loss_scale_params.loss_scale), 2)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0)
示例4: get_synthetic_inputs
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def get_synthetic_inputs(self, input_name, nclass):
"""Returns the ops to generate synthetic inputs and labels."""
def users_init_val():
return tf.random_uniform((self.batch_size, 1), minval=0,
maxval=_NUM_USERS_20M, dtype=tf.int32)
users = tf.Variable(users_init_val, dtype=tf.int32, trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name='synthetic_users')
def items_init_val():
return tf.random_uniform((self.batch_size, 1), minval=0,
maxval=_NUM_ITEMS_20M, dtype=tf.int32)
items = tf.Variable(items_init_val, dtype=tf.int32, trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name='synthetic_items')
def labels_init_val():
return tf.random_uniform((self.batch_size,), minval=0, maxval=2,
dtype=tf.int32)
labels = tf.Variable(labels_init_val, dtype=tf.int32, trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name='synthetic_labels')
return [users, items, labels]
示例5: _fp16_variable_creator
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def _fp16_variable_creator(next_creator, **kwargs):
"""Variable creator to create variables in fp32 and cast them to fp16."""
dtype = kwargs.get('dtype', None)
initial_value = kwargs.get('initial_value', None)
if dtype is None:
if initial_value is not None and not callable(initial_value):
dtype = initial_value.dtype
if dtype == tf.float16:
if callable(initial_value):
new_initial_value = lambda: tf.cast(initial_value(), tf.float32)
else:
new_initial_value = tf.cast(initial_value, tf.float32)
kwargs['dtype'] = tf.float32
kwargs['initial_value'] = new_initial_value
var = next_creator(**kwargs)
return tf.cast(var, dtype=tf.float16)
else:
return next_creator(**kwargs)
示例6: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def __init__(self, tensors):
tensors = list(tensors)
with tf.variable_scope('averaged'):
self._num_samples = tf.Variable(0, name='num_samples', trainable=False)
with tf.variable_scope('avg'):
self._averages = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
with tf.variable_scope('save'):
self._saves = [
tf.get_variable(
tensor.name.replace('/', '-').replace(':', '-'),
tensor.get_shape(), initializer=tf.zeros_initializer(),
trainable=False)
for tensor in tensors]
self._tensors = tensors
self._take_sample = self._make_take_sample()
self._switch = self._make_swith_to_average()
self._restore = self._make_restore()
self._reset = self._make_reset()
示例7: underlying_variable_ref
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def underlying_variable_ref(t):
"""Find the underlying variable ref.
Traverses through Identity, ReadVariableOp, and Enter ops.
Stops when op type has Variable or VarHandle in name.
Args:
t: a Tensor
Returns:
a Tensor that is a variable ref, or None on error.
"""
while t.op.type in ["Identity", "ReadVariableOp", "Enter"]:
t = t.op.inputs[0]
op_type = t.op.type
if "Variable" in op_type or "VarHandle" in op_type:
return t
else:
return None
示例8: underlying_variable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def underlying_variable(t):
"""Find the underlying tf.Variable object.
Args:
t: a Tensor
Returns:
tf.Variable.
"""
t = underlying_variable_ref(t)
assert t is not None
# make sure that the graph has a variable index and that it is up-to-date
if not hasattr(tf.get_default_graph(), "var_index"):
tf.get_default_graph().var_index = {}
var_index = tf.get_default_graph().var_index
for v in tf.global_variables()[len(var_index):]:
var_index[v.name] = v
return var_index[t.name]
示例9: testFlopRegularizerDontConvertToVariable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def testFlopRegularizerDontConvertToVariable(self):
tf.reset_default_graph()
tf.set_random_seed(1234)
x = tf.constant(1.0, shape=[2, 6], name='x', dtype=tf.float32)
w = tf.Variable(tf.truncated_normal([6, 4], stddev=1.0), use_resource=True)
net = tf.matmul(x, w)
# Create FLOPs network regularizer.
threshold = 0.9
flop_reg = flop_regularizer.GroupLassoFlopsRegularizer([net.op], threshold,
0)
with self.cached_session():
tf.global_variables_initializer().run()
flop_reg.get_regularization_term().eval()
示例10: local_variable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def local_variable(initial_value,
validate_shape=True,
name=None,
use_resource=None):
"""Create a variable with a value and add it to `GraphKeys.LOCAL_VARIABLES`.
Args:
initial_value: See variables.Variable.__init__.
validate_shape: See variables.Variable.__init__.
name: See variables.Variable.__init__.
use_resource: If `True` use a ResourceVariable instead of a Variable.
Returns:
New variable.
"""
return variable_scope.variable(
initial_value,
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES],
validate_shape=validate_shape,
use_resource=use_resource,
name=name)
示例11: global_variable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def global_variable(initial_value,
validate_shape=True,
name=None,
use_resource=None):
"""Create a variable with a value and add it to `GraphKeys.GLOBAL_VARIABLES`.
Args:
initial_value: See variables.Variable.__init__.
validate_shape: See variables.Variable.__init__.
name: See variables.Variable.__init__.
use_resource: If `True` use a ResourceVariable instead of a Variable.
Returns:
New variable.
"""
return variable_scope.variable(
initial_value,
trainable=False,
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
validate_shape=validate_shape,
use_resource=use_resource,
name=name)
示例12: get_unique_variable
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def get_unique_variable(var_op_name):
"""Gets the variable uniquely identified by that var_op_name.
Args:
var_op_name: the full name of the variable op, including the scope.
Returns:
a tensorflow variable.
Raises:
ValueError: if no variable uniquely identified by the name exists.
"""
candidates = get_variables(scope=var_op_name)
if not candidates:
raise ValueError('Couldn\'t find variable %s' % var_op_name)
for candidate in candidates:
if candidate.op.name == var_op_name:
return candidate
raise ValueError('Variable %s does not uniquely identify a variable' %
var_op_name)
示例13: get_variable_full_name
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def get_variable_full_name(var):
"""Returns the full name of a variable.
For normal Variables, this is the same as the var.op.name. For
sliced or PartitionedVariables, this name is the same for all the
slices/partitions. In both cases, this is normally the name used in
a checkpoint file.
Args:
var: A `Variable` object.
Returns:
A string that is the full name.
"""
if var._save_slice_info:
return var._save_slice_info.full_name
else:
return var.op.name
示例14: setup_optimizer
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def setup_optimizer(self):
"""Instantiates learning rate, decay op and train_op among others."""
# If not training, don't need to add optimizer to the graph.
if not self.is_training:
self.train_op = tf.no_op()
self.learning_rate = tf.no_op()
return
self.learning_rate = tf.Variable(
self.hparams.learning_rate,
name='learning_rate',
trainable=False,
dtype=tf.float32)
# FIXME 0.5 -> hparams.decay_rate
self.decay_op = tf.assign(self.learning_rate, 0.5 * self.learning_rate)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
self.train_op = self.optimizer.minimize(self.loss)
示例15: _variable_with_weight_decay
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Variable [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev=stddev))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var