當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.Summary方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.Summary方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.Summary方法的具體用法?Python v1.Summary怎麽用?Python v1.Summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.Summary方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testGifSummary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def testGifSummary(self):
    for c in (1, 3):
      images_shape = (1, 12, 48, 64, c)  # batch, time, height, width, channels
      images = np.random.randint(256, size=images_shape).astype(np.uint8)

      with self.test_session():
        summary = common_video.gif_summary(
            "gif", tf.convert_to_tensor(images), fps=10)
        summary_string = summary.eval()

      summary = tf.Summary()
      summary.ParseFromString(summary_string)

      self.assertEqual(1, len(summary.value))
      self.assertTrue(summary.value[0].HasField("image"))
      encoded = summary.value[0].image.encoded_image_string

      self.assertEqual(encoded, common_video._encode_gif(images[0], fps=10))  # pylint: disable=protected-access 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:common_video_test.py

示例2: image_to_tf_summary_value

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def image_to_tf_summary_value(image, tag):
  """Converts a NumPy image to a tf.Summary.Value object.

  Args:
    image: 3-D NumPy array.
    tag: name for tf.Summary.Value for display in tensorboard.
  Returns:
    image_summary: A tf.Summary.Value object.
  """
  curr_image = np.asarray(image, dtype=np.uint8)
  height, width, n_channels = curr_image.shape
  # If monochrome image, then reshape to [height, width]
  if n_channels == 1:
    curr_image = np.reshape(curr_image, [height, width])
  s = io.BytesIO()
  matplotlib_pyplot().imsave(s, curr_image, format="png")
  img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                             height=height, width=width,
                             colorspace=n_channels)
  return tf.Summary.Value(tag=tag, image=img_sum) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:22,代碼來源:image_utils.py

示例3: convert_predictions_to_image_summaries

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def convert_predictions_to_image_summaries(hook_args):
  """Optionally converts images from hooks_args to image summaries.

  Args:
    hook_args: DecodeHookArgs namedtuple
  Returns:
    summaries: list of tf.Summary values if hook_args.decode_hpara
  """
  decode_hparams = hook_args.decode_hparams
  if not decode_hparams.display_decoded_images:
    return []
  predictions = hook_args.predictions[0]

  # Display ten random inputs and outputs so that tensorboard does not hang.
  all_summaries = []
  rand_predictions = np.random.choice(predictions, size=10)
  for ind, prediction in enumerate(rand_predictions):
    output_summary = image_to_tf_summary_value(
        prediction["outputs"], tag="%d_output" % ind)
    input_summary = image_to_tf_summary_value(
        prediction["inputs"], tag="%d_input" % ind)
    all_summaries.append(input_summary)
    all_summaries.append(output_summary)
  return all_summaries 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:image_utils.py

示例4: _save_tensorboard_summaries

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def _save_tensorboard_summaries(self, iteration,
                                  num_episodes_eval,
                                  average_reward_eval):
    """Save statistics as tensorboard summaries.

    Args:
      iteration: int, The current iteration number.
      num_episodes_eval: int, number of evaluation episodes run.
      average_reward_eval: float, The average evaluation reward.
    """
    summary = tf.Summary(value=[
        tf.Summary.Value(tag='Eval/NumEpisodes',
                         simple_value=num_episodes_eval),
        tf.Summary.Value(tag='Eval/AverageReturns',
                         simple_value=average_reward_eval)
    ])
    self._summary_writer.add_summary(summary, iteration) 
開發者ID:google-research,項目名稱:batch_rl,代碼行數:19,代碼來源:run_experiment.py

示例5: image_summary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def image_summary(self, tag, images, step):
        img_summaries = []
        for i, img in enumerate(images):
            # Write the image to a string
            s = BytesIO()
            scipy.misc.toimage(img).save(s, format="png")

            # Create an Image object
            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
                                       height=img.shape[0],
                                       width=img.shape[1])
            # Create a Summary value
            img_summaries.append(
                tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))

        # Create and write Summary
        summary = tf.Summary(value=img_summaries)
        self.writer.add_summary(summary, step) 
開發者ID:vacancy,項目名稱:Jacinle,代碼行數:20,代碼來源:tb.py

示例6: histo_summary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def histo_summary(self, tag, values, step, bins=1000):
        # Create a histogram using numpy
        counts, bin_edges = np.histogram(values, bins=bins)

        # Fill the fields of the histogram proto
        hist = tf.HistogramProto()
        hist.min = float(np.min(values))
        hist.max = float(np.max(values))
        hist.num = int(np.prod(values.shape))
        hist.sum = float(np.sum(values))
        hist.sum_squares = float(np.sum(values ** 2))

        # Drop the start of the first bin
        bin_edges = bin_edges[1:]

        # Add bin edges and counts
        for edge in bin_edges:
            hist.bucket_limit.append(edge)
        for c in counts:
            hist.bucket.append(c)

        # Create and write Summary
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
        self.writer.add_summary(summary, step) 
開發者ID:vacancy,項目名稱:Jacinle,代碼行數:26,代碼來源:tb.py

示例7: _write_metrics

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def _write_metrics(self, step, suffix):
    """Writes the metrics to Tensorboard summaries."""

    def add_summary(tag, value):
      summary = tf.Summary(
          value=[tf.Summary.Value(tag=tag + '/' + suffix, simple_value=value)])
      self._summary_writer.add_summary(summary, step)

    num_steps = np.sum(self._stats['episode_length'])
    time_per_step = np.sum(self._stats['episode_time']) / num_steps

    add_summary('TimePerStep', time_per_step)
    add_summary('AverageEpisodeLength', np.mean(self._stats['episode_length']))
    add_summary('AverageEpisodeRewards', np.mean(self._stats['episode_reward']))
    add_summary('StdEpisodeRewards', np.std(self._stats['episode_reward']))

    # Environment-specific Tensorboard summaries.
    self._env.write_metrics(add_summary)

    self._summary_writer.flush() 
開發者ID:google-research,項目名稱:recsim,代碼行數:22,代碼來源:runner_lib.py

示例8: test_parse_events_files

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def test_parse_events_files(self):
    tb_summary_dir = self.create_tempdir()
    tf.disable_eager_execution()  # Needed in pytest.
    summary_writer = tf.summary.FileWriter(tb_summary_dir.full_path)
    tags = [
        "eval/foo_task/accuracy",
        "eval/foo_task/accuracy",
        "loss",
    ]
    values = [1., 2., 3.]
    steps = [20, 30, 40]
    for tag, value, step in zip(tags, values, steps):
      summary = tf.Summary()
      summary.value.add(tag=tag, simple_value=value)
      summary_writer.add_summary(summary, step)
    summary_writer.flush()
    events = eval_utils.parse_events_files(tb_summary_dir.full_path)
    self.assertDictEqual(
        events,
        {
            "eval/foo_task/accuracy": [(20, 1.), (30, 2.)],
            "loss": [(40, 3.)],
        },
    ) 
開發者ID:google-research,項目名稱:text-to-text-transfer-transformer,代碼行數:26,代碼來源:eval_utils_test.py

示例9: write_metrics

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def write_metrics(metrics, global_step, summary_dir):
  """Write metrics to a summary directory.

  Args:
    metrics: A dictionary containing metric names and values.
    global_step: Global step at which the metrics are computed.
    summary_dir: Directory to write tensorflow summaries to.
  """
  tf.logging.info('Writing metrics to tf summary.')
  summary_writer = tf.summary.FileWriterCache.get(summary_dir)
  for key in sorted(metrics):
    summary = tf.Summary(value=[
        tf.Summary.Value(tag=key, simple_value=metrics[key]),
    ])
    summary_writer.add_summary(summary, global_step)
    tf.logging.info('%s: %f', key, metrics[key])
  tf.logging.info('Metrics written to tf summary.')


# TODO(rathodv): Add tests. 
開發者ID:tensorflow,項目名稱:models,代碼行數:22,代碼來源:eval_util.py

示例10: log_scalar_summaries

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def log_scalar_summaries(summary_proto):
  summary = tf.Summary()
  summary.ParseFromString(summary_proto)
  for value in summary.value:
    logging.info('%s: %s', value.tag, value.simple_value) 
開發者ID:deepmind,項目名稱:lamb,代碼行數:7,代碼來源:utils.py

示例11: summarize_metrics

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def summarize_metrics(eval_metrics_writer, metrics, epoch):
  """Write metrics to summary."""
  for (name, value) in six.iteritems(metrics):
    summary = tf.Summary()
    summary.value.add(tag=name, simple_value=value)
    eval_metrics_writer.add_summary(summary, epoch)
  eval_metrics_writer.flush() 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:9,代碼來源:rl_utils.py

示例12: run_postdecode_hooks

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def run_postdecode_hooks(decode_hook_args, dataset_split):
  """Run hooks after decodes have run."""
  hooks = decode_hook_args.problem.decode_hooks
  if not hooks:
    return
  global_step = latest_checkpoint_step(decode_hook_args.estimator.model_dir)
  if global_step is None:
    tf.logging.info(
        "Skipping decode hooks because no checkpoint yet available.")
    return
  tf.logging.info("Running decode hooks.")
  parent_dir = os.path.join(decode_hook_args.output_dirs[0], os.pardir)
  child_dir = decode_hook_args.decode_hparams.summaries_log_dir
  if dataset_split is not None:
    child_dir += "_{}".format(dataset_split)
  final_dir = os.path.join(parent_dir, child_dir)
  summary_writer = tf.summary.FileWriter(final_dir)

  for hook in hooks:
    # Isolate each hook in case it creates TF ops
    with tf.Graph().as_default():
      summaries = hook(decode_hook_args)
    if summaries:
      summary = tf.Summary(value=list(summaries))
      summary_writer.add_summary(summary, global_step)
  summary_writer.close()
  tf.logging.info("Decode hooks done.") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:29,代碼來源:decoding.py

示例13: interpolations_to_summary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def interpolations_to_summary(sample_ind, interpolations, first_frame,
                              last_frame, hparams, decode_hp):
  """Converts interpolated frames into tf summaries.

  The summaries consists of:
    1. Image summary corresponding to the first frame.
    2. Image summary corresponding to the last frame.
    3. The interpolated frames as a gif summary.

  Args:
    sample_ind: int
    interpolations: Numpy array, shape=(num_interp, H, W, 3)
    first_frame: Numpy array, shape=(HWC)
    last_frame: Numpy array, shape=(HWC)
    hparams: HParams, train hparams
    decode_hp: HParams, decode hparams
  Returns:
    summaries: list of tf Summary Values.
  """
  parent_tag = "sample_%d" % sample_ind
  frame_shape = hparams.problem.frame_shape
  interp_shape = [hparams.batch_size, decode_hp.num_interp] + frame_shape
  interpolations = np.reshape(interpolations, interp_shape)
  interp_tag = "%s/interp/%s" % (parent_tag, decode_hp.channel_interp)
  if decode_hp.channel_interp == "ranked":
    interp_tag = "%s/rank_%d" % (interp_tag, decode_hp.rank_interp)
  summaries, _ = common_video.py_gif_summary(
      interp_tag, interpolations, return_summary_value=True,
      max_outputs=decode_hp.max_display_outputs,
      fps=decode_hp.frames_per_second)

  if decode_hp.save_frames:
    first_frame_summ = image_utils.image_to_tf_summary_value(
        first_frame, "%s/first" % parent_tag)
    last_frame_summ = image_utils.image_to_tf_summary_value(
        last_frame, "%s/last" % parent_tag)
    summaries.append(first_frame_summ)
    summaries.append(last_frame_summ)
  return summaries 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:41,代碼來源:nfg_interpolate.py

示例14: compute_bleu_summaries

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def compute_bleu_summaries(hook_args):
  """Compute BLEU core summaries using the decoder output.

  Args:
    hook_args: DecodeHookArgs namedtuple
  Returns:
    A list of tf.Summary values if hook_args.hparams contains the
    reference file and the translated file.
  """
  decode_hparams = hook_args.decode_hparams

  if not (decode_hparams.decode_reference and decode_hparams.decode_to_file):
    return None

  values = []
  bleu = 100 * bleu_hook.bleu_wrapper(
      decode_hparams.decode_reference, decode_hparams.decode_to_file)
  values.append(tf.Summary.Value(tag="BLEU", simple_value=bleu))
  tf.logging.info("%s: BLEU = %6.2f" % (decode_hparams.decode_to_file, bleu))
  if hook_args.hparams.mlperf_mode:
    current_step = decode_hparams.mlperf_decode_step
    mlperf_log.transformer_print(
        key=mlperf_log.EVAL_TARGET, value=decode_hparams.mlperf_threshold)
    mlperf_log.transformer_print(
        key=mlperf_log.EVAL_ACCURACY,
        value={
            "epoch": max(current_step // decode_hparams.iterations_per_loop - 1,
                         0),
            "value": bleu
        })
    mlperf_log.transformer_print(key=mlperf_log.EVAL_STOP)

  if bleu >= decode_hparams.mlperf_threshold:
    decode_hparams.set_hparam("mlperf_success", True)

  return values 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:38,代碼來源:translate.py

示例15: write_tf_summary

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Summary [as 別名]
def write_tf_summary(writer, step, tag, value):
  summary = tf.Summary()
  summary.value.add(tag=tag, simple_value=value)
  writer.add_summary(summary, step) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:6,代碼來源:robust_train.py


注:本文中的tensorflow.compat.v1.Summary方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。