當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.FixedLenSequenceFeature方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.FixedLenSequenceFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.FixedLenSequenceFeature方法的具體用法?Python v1.FixedLenSequenceFeature怎麽用?Python v1.FixedLenSequenceFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.FixedLenSequenceFeature方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: example_reading_spec

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def example_reading_spec(self):
    data_fields, data_items_to_decoders = (
        super(ImageVqav2Tokens10kLabels3k, self).example_reading_spec())
    data_fields["image/image_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question_id"] = tf.FixedLenFeature((), tf.int64)
    data_fields["image/question"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)
    data_fields["image/answer"] = tf.FixedLenSequenceFeature(
        (), tf.int64, allow_missing=True)

    slim = contrib.slim()
    data_items_to_decoders["question"] = slim.tfexample_decoder.Tensor(
        "image/question")
    data_items_to_decoders["targets"] = slim.tfexample_decoder.Tensor(
        "image/answer")
    return data_fields, data_items_to_decoders 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:18,代碼來源:vqa.py

示例2: parse_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def parse_example(serialized_example):
  """Parse example."""
  features = tf.parse_single_example(
      serialized_example,
      features={
          "question":
              tf.FixedLenFeature([], tf.string),
          "context":
              tf.FixedLenSequenceFeature(
                  dtype=tf.string, shape=[], allow_missing=True),
          "long_answer_indices":
              tf.FixedLenSequenceFeature(
                  dtype=tf.int64, shape=[], allow_missing=True)
      })
  features["question"] = features["question"]
  features["context"] = features["context"]
  features["long_answer_indices"] = tf.to_int32(features["long_answer_indices"])
  return features 
開發者ID:google-research,項目名稱:language,代碼行數:20,代碼來源:nq_long_dataset.py

示例3: parse_and_preprocess

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def parse_and_preprocess(self, value, batch_position):
    """Parse an TFRecord."""
    del batch_position
    assert self.supports_datasets()
    context_features = {
        'labels': tf.VarLenFeature(dtype=tf.int64),
        'input_length': tf.FixedLenFeature([], dtype=tf.int64),
        'label_length': tf.FixedLenFeature([], dtype=tf.int64),
    }
    sequence_features = {
        'features': tf.FixedLenSequenceFeature([161], dtype=tf.float32)
    }
    context_parsed, sequence_parsed = tf.parse_single_sequence_example(
        serialized=value,
        context_features=context_features,
        sequence_features=sequence_features,
    )

    return [
        # Input
        tf.expand_dims(sequence_parsed['features'], axis=2),
        # Label
        tf.cast(
            tf.reshape(
                tf.sparse_tensor_to_dense(context_parsed['labels']), [-1]),
            dtype=tf.int32),
        # Input length
        tf.cast(
            tf.reshape(context_parsed['input_length'], [1]),
            dtype=tf.int32),
        # Label length
        tf.cast(
            tf.reshape(context_parsed['label_length'], [1]),
            dtype=tf.int32),
    ] 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:37,代碼來源:preprocessing.py

示例4: _get_feature

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def _get_feature(tensor_spec,
                 decode_images = True):
  """Get FixedLenfeature or FixedLenSequenceFeature for a tensor spec."""
  varlen_default_value = getattr(tensor_spec, 'varlen_default_value', None)
  if getattr(tensor_spec, 'is_sequence', False):
    cls = tf.FixedLenSequenceFeature
  elif varlen_default_value is not None:
    cls = tf.VarLenFeature
  else:
    cls = tf.FixedLenFeature
  if decode_images and is_encoded_image_spec(tensor_spec):
    if varlen_default_value is not None:
      # Contains a variable length list of images.
      return cls(tf.string)
    elif len(tensor_spec.shape) > 3:
      # Contains a fixed length list of images.
      return cls((tensor_spec.shape[0]), tf.string)
    else:
      return cls((), tf.string)
  elif varlen_default_value is not None:
    return cls(tensor_spec.dtype)
  else:
    return cls(tensor_spec.shape, tensor_spec.dtype) 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:25,代碼來源:tensorspec_utils.py

示例5: tensorspec_to_feature_dict

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def tensorspec_to_feature_dict(tensor_spec_struct, decode_images = True):
  """Converts collection of tensorspecs to a dict of FixedLenFeatures specs.

  Args:
    tensor_spec_struct: A (possibly nested) collection of TensorSpec.
    decode_images: If True, TensorSpec with data_format 'JPEG' or 'PNG' are
      interpreted as encoded image strings.

  Returns:
    features: A dict mapping feature keys to FixedLenFeature and
      FixedLenSequenceFeature values.

  Raises:
    ValueError: If duplicate keys are found in the TensorSpecs.
  """
  assert_valid_spec_structure(tensor_spec_struct)
  features = {}
  tensor_spec_dict = {}

  # Note it is valid to iterate over all tensors since
  # assert_valid_spec_structure will ensure that non unique tensor_spec names
  # have the identical properties.
  flat_tensor_spec_struct = flatten_spec_structure(tensor_spec_struct)
  for key, tensor_spec in flat_tensor_spec_struct.items():
    if tensor_spec.name is None:
      # Do not attempt to parse TensorSpecs whose name attribute is not set.
      logging.info(
          'TensorSpec name attribute for %s is not set; will not parse this '
          'Tensor from TFExamples.', key)
      continue
    features[tensor_spec.name] = _get_feature(tensor_spec, decode_images)
    tensor_spec_dict[tensor_spec.name] = tensor_spec
  return features, tensor_spec_dict 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:35,代碼來源:tensorspec_utils.py

示例6: get_sequence_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def get_sequence_features(use_segment_ids, use_foreign_key_features,
                          string_alignment_features):
  """Gets sequence features (i.e., for input/output sequence to the model)."""
  keys_to_sequence_features = {
      constants.SOURCE_WORDPIECES_KEY:
          tf.FixedLenSequenceFeature([], dtype=tf.int64),
      constants.TARGET_ACTION_TYPES_KEY:
          tf.FixedLenSequenceFeature([], dtype=tf.int64),
      constants.TARGET_ACTION_IDS_KEY:
          tf.FixedLenSequenceFeature([], dtype=tf.int64),
      constants.COPIABLE_INPUT_KEY:
          tf.FixedLenSequenceFeature([], dtype=tf.int64)
  }

  if use_segment_ids:
    keys_to_sequence_features[
        constants.SEGMENT_ID_KEY] = tf.FixedLenSequenceFeature([],
                                                               dtype=tf.int64)

  if use_foreign_key_features:
    keys_to_sequence_features[
        constants.FOREIGN_KEY_KEY] = tf.FixedLenSequenceFeature([],
                                                                dtype=tf.int64)

  if string_alignment_features:
    keys_to_sequence_features[
        constants.ALIGNED_KEY] = tf.FixedLenSequenceFeature([], dtype=tf.int64)

  return keys_to_sequence_features 
開發者ID:google-research,項目名稱:language,代碼行數:31,代碼來源:input_pipeline.py

示例7: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def __init__(self, keys_to_context_features, keys_to_sequence_features,
               items_to_handlers):
    """Constructs the decoder.

    Args:
      keys_to_context_features: A dictionary from TF-SequenceExample context
        keys to either tf.VarLenFeature or tf.FixedLenFeature instances.
        See tensorflow's parsing_ops.py.
      keys_to_sequence_features: A dictionary from TF-SequenceExample sequence
        keys to either tf.VarLenFeature or tf.FixedLenSequenceFeature instances.
      items_to_handlers: A dictionary from items (strings) to ItemHandler
        instances. Note that the ItemHandler's are provided the keys that they
        use to return the final item Tensors.
    Raises:
      ValueError: If the same key is present for context features and sequence
        features.
    """
    unique_keys = set()
    unique_keys.update(keys_to_context_features)
    unique_keys.update(keys_to_sequence_features)
    if len(unique_keys) != (
        len(keys_to_context_features) + len(keys_to_sequence_features)):
      # This situation is ambiguous in the decoder's keys_to_tensors variable.
      raise ValueError('Context and sequence keys are not unique. \n'
                       ' Context keys: %s \n Sequence keys: %s' %
                       (list(keys_to_context_features.keys()),
                        list(keys_to_sequence_features.keys())))
    self._keys_to_context_features = keys_to_context_features
    self._keys_to_sequence_features = keys_to_sequence_features
    self._items_to_handlers = items_to_handlers 
開發者ID:tensorflow,項目名稱:models,代碼行數:32,代碼來源:tf_sequence_example_decoder.py

示例8: __init__

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def __init__(self,
               shape,
               dtype,
               name = None,
               is_optional = None,
               is_sequence = False,
               is_extracted = False,
               data_format = None,
               dataset_key = None,
               varlen_default_value = None):
    """Creates a TensorSpec.

    Args:
      shape: Value convertible to `tf.TensorShape`. The shape of the tensor.
      dtype: Value convertible to `tf.DType`. The type of the tensor values.
      name: Optional name for the Tensor.
      is_optional: If True, the tensor is optional, required otherwise.
      is_sequence: If True, interpret as tf.FixedLenSequenceFeature instead of
        tf.FixedLenFeature.
      is_extracted: If True, implies this spec was inferred from a Tensor or
        np.array.
      data_format: Optional name of the data_format, e.g. jpeg, png.
      dataset_key: Optional key name of which dataset to pull this tensor from.
      varlen_default_value: Optional if a value other than None is provided
        the spec is assumed to be a VarLenFeature with the default value in the
        corrensponding data type. When using a VarLenFeature, the 0th index in
        the shape corresponds to the length that the feature will be padded or
        clipped to. When padded, the varlen_default_value will be used for
        padding. When clipped, some data might be ignored.

    Raises:
      TypeError: If shape is not convertible to a `tf.TensorShape`, or dtype is
        not convertible to a `tf.DType`.
    """
    super(ExtendedTensorSpec, self).__init__(
        shape=shape, dtype=dtype, name=name)
    if is_optional is None:
      is_optional = False
    self._is_optional = is_optional
    self._is_sequence = is_sequence
    self._is_extracted = is_extracted
    self._data_format = data_format
    if dataset_key is None:
      dataset_key = ''
    self._dataset_key = dataset_key
    self._varlen_default_value = varlen_default_value
    if self._varlen_default_value is not None:
      if data_format is None and len(self.shape) != 1:
        raise ValueError(
            ('VarLenFeatures are only supported for shapes of rank 1 ({}) when '
             'not using an image spec.').format(shape))
      if data_format is not None and len(self.shape) != 4:
        raise ValueError(
            ('VarLenFeatures are only supported for shapes of rank 4 ({}) when '
             'using an image spec.').format(shape)) 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:57,代碼來源:tensorspec_utils.py

示例9: file_based_input_fn_builder

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import FixedLenSequenceFeature [as 別名]
def file_based_input_fn_builder(input_file, seq_length, fewshot_num_classes,
                                fewshot_num_examples_per_class, drop_remainder):
  """Creates an `input_fn` closure to be passed to tf.Estimator."""

  # Add one for the 'query' example.
  fewshot_batch = fewshot_num_classes * fewshot_num_examples_per_class + 1
  name_to_features = {
      "input_ids": tf.FixedLenSequenceFeature([seq_length], tf.int64),
      "input_mask": tf.FixedLenSequenceFeature([seq_length], tf.int64),
      "segment_ids": tf.FixedLenSequenceFeature([seq_length], tf.int64),
      "guid": tf.FixedLenSequenceFeature([], tf.string),
  }

  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    _, example = tf.parse_single_sequence_example(
        record, sequence_features=name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.to_int32(t)
      shape = tf.shape(example[name])
      # sequence_examples come with dynamic/unknown dimension which we reshape
      # to explicit dimension for the fewshot "batch" size.
      example[name] = tf.reshape(t, tf.concat([[fewshot_batch], shape[1:]], 0))

    return example

  def input_fn(params):
    """The actual input function."""
    d = tf.data.TFRecordDataset(input_file)
    d = d.apply(
        tf.data.experimental.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=params["batch_size"],
            drop_remainder=drop_remainder))

    return d

  return input_fn 
開發者ID:google-research,項目名稱:language,代碼行數:45,代碼來源:bert_fewshot_classifier.py


注:本文中的tensorflow.compat.v1.FixedLenSequenceFeature方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。