當前位置: 首頁>>代碼示例>>Python>>正文


Python v1.Example方法代碼示例

本文整理匯總了Python中tensorflow.compat.v1.Example方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.Example方法的具體用法?Python v1.Example怎麽用?Python v1.Example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.compat.v1的用法示例。


在下文中一共展示了v1.Example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: to_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def to_example(dictionary):
  """Helper: build tf.Example from (string -> int/float/str list) dictionary."""
  features = {}
  for (k, v) in six.iteritems(dictionary):
    if not v:
      raise ValueError("Empty generated field: %s" % str((k, v)))
    # Subtly in PY2 vs PY3, map is not scriptable in py3. As a result,
    # map objects will fail with TypeError, unless converted to a list.
    if six.PY3 and isinstance(v, map):
      v = list(v)
    if (isinstance(v[0], six.integer_types) or
        np.issubdtype(type(v[0]), np.integer)):
      features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
    elif isinstance(v[0], float):
      features[k] = tf.train.Feature(float_list=tf.train.FloatList(value=v))
    elif isinstance(v[0], six.string_types):
      if not six.PY2:  # Convert in python 3.
        v = [bytes(x, "utf-8") for x in v]
      features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
    elif isinstance(v[0], bytes):
      features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
    else:
      raise ValueError("Value for %s is not a recognized type; v: %s type: %s" %
                       (k, str(v[0]), str(type(v[0]))))
  return tf.train.Example(features=tf.train.Features(feature=features)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:27,代碼來源:generator_utils.py

示例2: serving_input_receiver_fn

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def serving_input_receiver_fn():
  """Creates an input function for serving."""
  seq_len = FLAGS.max_seq_length
  serialized_example = tf.placeholder(
      dtype=tf.string, shape=[None], name="serialized_example")
  features = {
      "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64),
  }
  feature_map = tf.parse_example(serialized_example, features=features)
  feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32)
  feature_map["label_ids"] = tf.constant(0, dtype=tf.int32)

  # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
  # So cast all int64 to int32.
  for name in feature_map.keys():
    t = feature_map[name]
    if t.dtype == tf.int64:
      t = tf.to_int32(t)
    feature_map[name] = t

  return tf.estimator.export.ServingInputReceiver(
      features=feature_map, receiver_tensors=serialized_example) 
開發者ID:google-research,項目名稱:albert,代碼行數:26,代碼來源:run_classifier.py

示例3: process_feature

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])
      impossible = 0
      if feature.is_impossible:
        impossible = 1
      features["is_impossible"] = create_int_feature([impossible])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:tensorflow,項目名稱:mesh,代碼行數:27,代碼來源:run_squad.py

示例4: file_based_convert_examples_to_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def file_based_convert_examples_to_features(
    examples, label_list, max_seq_length, tokenizer, output_file):
  """Convert a set of `InputExample`s to a TFRecord file."""

  writer = tf.python_io.TFRecordWriter(output_file)

  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
      tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["label_ids"] = create_int_feature([feature.label_id])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString()) 
開發者ID:google-research,項目名稱:language,代碼行數:27,代碼來源:run_bert_boolq.py

示例5: process_feature

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    if self.is_training:
      features["label_ids"] = create_int_feature([feature.label_id])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:google-research,項目名稱:language,代碼行數:22,代碼來源:run_squad_membership.py

示例6: convert_single_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def convert_single_example(example, rand_example, max_seq_length, tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  # Add padding examples here

  example_type = collections.namedtuple(
      "Example", ["input_ids", "input_mask", "segment_ids", "labels"])

  labels = range(8)  # inconsequential
  rand_sents = rand_example[:8]
  target_sents = example[:4] + example[5:] + rand_sents
  bert_input = create_cpc_input_from_text(
      tokenizer,
      example[4],
      target_sents,
      labels,
      group_size=16,
      max_seq_length=max_seq_length)

  feature = example_type(bert_input.tokens, bert_input.mask, bert_input.seg_ids,
                         labels)
  return feature 
開發者ID:google-research,項目名稱:language,代碼行數:23,代碼來源:run_finetune_coherence.py

示例7: construct_pipeline

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def construct_pipeline(pipeline, input_tfrecord, output_tfrecord, model_dir,
                       confidence_threshold, num_shards):
  """Returns a Beam pipeline to run object detection inference.

  Args:
    pipeline: Initialized beam pipeline.
    input_tfrecord: A TFRecord of tf.train.Example protos containing images.
    output_tfrecord: A TFRecord of tf.train.Example protos that contain images
      in the input TFRecord and the detections from the model.
    model_dir: Path to `saved_model` to use for inference.
    confidence_threshold: Threshold to use when keeping detection results.
    num_shards: The number of output shards.
  """
  input_collection = (
      pipeline | 'ReadInputTFRecord' >> beam.io.tfrecordio.ReadFromTFRecord(
          input_tfrecord,
          coder=beam.coders.BytesCoder()))
  output_collection = input_collection | 'RunInference' >> beam.ParDo(
      GenerateDetectionDataFn(model_dir, confidence_threshold))
  output_collection = output_collection | 'Reshuffle' >> beam.Reshuffle()
  _ = output_collection | 'WritetoDisk' >> beam.io.tfrecordio.WriteToTFRecord(
      output_tfrecord,
      num_shards=num_shards,
      coder=beam.coders.ProtoCoder(tf.train.Example)) 
開發者ID:tensorflow,項目名稱:models,代碼行數:26,代碼來源:generate_detection_data.py

示例8: tfrecord_iterator

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def tfrecord_iterator(filenames, gzipped=False, example_spec=None):
  """Yields records from TFRecord files.

  Args:
    filenames: list<str>, list of TFRecord filenames to read from.
    gzipped: bool, whether the TFRecord files are gzip-encoded.
    example_spec: dict<str feature name, tf.VarLenFeature/tf.FixedLenFeature>,
      if provided, will parse each record as a tensorflow.Example proto.

  Yields:
    Records (or parsed Examples, if example_spec is provided) from files.
  """
  with tf.Graph().as_default():
    dataset = tf.data.Dataset.from_tensor_slices(filenames)

    def _load_records(filename):
      return tf.data.TFRecordDataset(
          filename,
          compression_type=tf.constant("GZIP") if gzipped else None,
          buffer_size=16 * 1000 * 1000)

    dataset = dataset.flat_map(_load_records)

    def _parse_example(ex_ser):
      return tf.parse_single_example(ex_ser, example_spec)

    if example_spec:
      dataset = dataset.map(_parse_example, num_parallel_calls=32)
    dataset = dataset.prefetch(100)
    record_it = dataset.make_one_shot_iterator().get_next()

    with tf.Session() as sess:
      while True:
        try:
          ex = sess.run(record_it)
          yield ex
        except tf.errors.OutOfRangeError:
          break 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:40,代碼來源:generator_utils.py

示例9: _decode_record

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
        t = example[name]
        if t.dtype == tf.int64:
            t = tf.cast(t, tf.int32)
        example[name] = t
    return example 
開發者ID:imcaspar,項目名稱:gpt2-ml,代碼行數:14,代碼來源:dataloader.py

示例10: classification_convert_examples_to_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def classification_convert_examples_to_features(
        examples, max_seq_length, batch_size, encoder, output_file, labels, pad_extra_examples=False,
        chop_from_front_if_needed=True):
    """Convert a set of `InputExample`s to a TFRecord file."""

    writer = tf.python_io.TFRecordWriter(output_file)

    label_map = {label: i for i, label in enumerate(labels)}

    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

        # begin_summary is our [CLS] token
        tokens = example['ids'] + [encoder.begin_summary]

        if len(tokens) > max_seq_length:
            if chop_from_front_if_needed:
                tokens = tokens[-max_seq_length:]
            else:
                tokens = example['ids'][:(max_seq_length-1)] + [encoder.begin_summary]
        elif len(tokens) < max_seq_length:
            tokens.extend([encoder.padding] * (max_seq_length - len(tokens)))

        features = collections.OrderedDict()
        features['input_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=tokens))
        features['label_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[label_map[example['label']]]))
        features['is_real_example'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[1]))
        tf_example = tf.train.Example(features=tf.train.Features(feature=features))
        writer.write(tf_example.SerializeToString())

    if pad_extra_examples:
        for x in range(len(examples) % batch_size):
            features = collections.OrderedDict()
            features['input_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]*max_seq_length))
            features['label_ids'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]))
            features['is_real_example'] = tf.train.Feature(int64_list=tf.train.Int64List(value=[0]))
            tf_example = tf.train.Example(features=tf.train.Features(feature=features))
            writer.write(tf_example.SerializeToString())
    writer.close() 
開發者ID:imcaspar,項目名稱:gpt2-ml,代碼行數:42,代碼來源:dataloader.py

示例11: file_based_convert_examples_to_features

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def file_based_convert_examples_to_features(
    examples, label_list, max_seq_length, tokenizer, output_file, task_name):
  """Convert a set of `InputExample`s to a TFRecord file."""

  writer = tf.python_io.TFRecordWriter(output_file)

  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
      tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer, task_name)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f

    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["label_ids"] = create_float_feature([feature.label_id])\
        if task_name == "sts-b" else create_int_feature([feature.label_id])
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close() 
開發者ID:google-research,項目名稱:albert,代碼行數:35,代碼來源:classifier_utils.py

示例12: process_feature

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["p_mask"] = create_int_feature(feature.p_mask)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])
      impossible = 0
      if feature.is_impossible:
        impossible = 1
      features["is_impossible"] = create_int_feature([impossible])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:google-research,項目名稱:albert,代碼行數:28,代碼來源:squad_utils.py

示例13: get_example

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def get_example(self, batch_size):
    """Get a single example from the tfrecord file.

    Args:
      batch_size: Int, minibatch size.

    Returns:
      tf.Example protobuf parsed from tfrecord.
    """
    reader = tf.TFRecordReader()
    num_epochs = None if self.is_training else 1
    capacity = batch_size
    path_queue = tf.train.input_producer(
        [self.record_path],
        num_epochs=num_epochs,
        shuffle=self.is_training,
        capacity=capacity)
    unused_key, serialized_example = reader.read(path_queue)
    features = {
        "note_str": tf.FixedLenFeature([], dtype=tf.string),
        "pitch": tf.FixedLenFeature([1], dtype=tf.int64),
        "velocity": tf.FixedLenFeature([1], dtype=tf.int64),
        "audio": tf.FixedLenFeature([64000], dtype=tf.float32),
        "qualities": tf.FixedLenFeature([10], dtype=tf.int64),
        "instrument_source": tf.FixedLenFeature([1], dtype=tf.int64),
        "instrument_family": tf.FixedLenFeature([1], dtype=tf.int64),
    }
    example = tf.parse_single_example(serialized_example, features)
    return example 
開發者ID:magenta,項目名稱:magenta,代碼行數:31,代碼來源:reader.py

示例14: create_metaexample_spec

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def create_metaexample_spec(
    model_spec,
    num_samples_per_task,
    prefix):
  """Converts a model feature/label spec into a MetaExample spec.

  Args:
    model_spec: The base model tensor spec.
    num_samples_per_task: Number of episodes in the task.
    prefix: The tf.Example feature column name prefix.
  Returns:
    A TSpecStructure. For each spec in model_spec, the output contains
    num_samples_per_task corresponding specs stored as: "<name>/i".
  """
  model_spec = utils.flatten_spec_structure(model_spec)
  meta_example_spec = TSpecStructure()

  for key in model_spec.keys():
    for i in range(num_samples_per_task):
      spec = model_spec[key]
      name_prefix = '{:s}_ep{:d}'.format(prefix, i)
      new_name = name_prefix + '/' + six.ensure_str(spec.name)
      meta_example_spec[key + '/{:}'.format(i)] = (
          utils.ExtendedTensorSpec.from_spec(
              spec, name=new_name))
  return meta_example_spec 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:28,代碼來源:preprocessors.py

示例15: get_feature_specification

# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import Example [as 別名]
def get_feature_specification(
      self, mode):
    """Required features for the model_fn/model_inference_fn.

    Note, the model_fn might use additional features for debugging/development
    purposes. The create_export_outputs_fn will however only require the
    specified required features. Only this subset of features will be used to
    generate automatic tf.Example extractors and numpy placeholders for the
    serving models.

    Args:
      mode: The mode for feature specifications
    """ 
開發者ID:google-research,項目名稱:tensor2robot,代碼行數:15,代碼來源:abstract_model.py


注:本文中的tensorflow.compat.v1.Example方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。