本文整理匯總了Python中tensorflow.compat.v1.ConfigProto方法的典型用法代碼示例。如果您正苦於以下問題:Python v1.ConfigProto方法的具體用法?Python v1.ConfigProto怎麽用?Python v1.ConfigProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.compat.v1
的用法示例。
在下文中一共展示了v1.ConfigProto方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testTrainWithSessionConfig
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def testTrainWithSessionConfig(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
tf_predictions = LogisticClassifier(tf_inputs)
loss_ops.log_loss(tf_labels, tf_predictions)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
session_config = tf.ConfigProto(allow_soft_placement=True)
loss = learning.train(
train_op,
None,
number_of_steps=300,
log_every_n_steps=10,
session_config=session_config)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
示例2: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def __init__(self, net_name, do_tf_logging=True, flagCS = False):
set_tf_logging(do_tf_logging)
# from https://kobkrit.com/using-allow-growth-memory-option-in-tensorflow-and-keras-dc8c8081bc96
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
#config.log_device_placement = True # to log device placement (on which device the operation ran)
sess = tf.Session(config=config)
set_session(sess) # set this TensorFlow session as the default session for Keras
model, model_cen, pix_mean, pix_mean_cen = build_L2_net(net_name)
self.flagCS = flagCS
self.model = model
self.model_cen = model_cen
self.pix_mean = pix_mean
self.pix_mean_cen = pix_mean_cen
示例3: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def __init__(self, k: int, lu: float = 0.01, lv: float = 0.01, a: float = 1, b: float = 0.01) -> None:
self.__sn = 'wmf'
self.k = k
self.lu = lu
self.lv = lv
self.a = a
self.b = b
self.tf_config = tf.ConfigProto()
self.tf_config.gpu_options.allow_growth=True
self.uids = None
self.n_users = None
self.usm = None
self.iids = None
self.n_items = None
self.ism = None
self.n_ratings = None
self.u_rated = None
self.i_rated = None
self.fue = None
self.fie = None
示例4: set_gpu_fraction
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def set_gpu_fraction(sess=None, gpu_fraction=0.3):
"""Set the GPU memory fraction for the application.
Parameters
----------
sess : a session instance of TensorFlow
TensorFlow session
gpu_fraction : a float
Fraction of GPU memory, (0 ~ 1]
References
----------
- `TensorFlow using GPU <https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html>`_
"""
print(" tensorlayer: GPU MEM Fraction %f" % gpu_fraction)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)
sess = tf.Session(config = tf.ConfigProto(gpu_options = gpu_options))
return sess
示例5: __init__
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def __init__(self, player_config, env_config):
player_base.PlayerBase.__init__(self, player_config)
self._action_set = (env_config['action_set']
if 'action_set' in env_config else 'default')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self._sess = tf.Session(config=config)
self._player_prefix = 'player_{}'.format(player_config['index'])
stacking = 4 if player_config.get('stacked', True) else 1
policy = player_config.get('policy', 'cnn')
self._stacker = ObservationStacker(stacking)
with tf.variable_scope(self._player_prefix):
with tf.variable_scope('ppo2_model'):
policy_fn = build_policy(DummyEnv(self._action_set, stacking), policy)
self._policy = policy_fn(nbatch=1, sess=self._sess)
_load_variables(player_config['checkpoint'], self._sess,
prefix=self._player_prefix + '/')
示例6: initialize_session
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def initialize_session(self):
"""Initializes a tf.Session."""
if ENABLE_TF_OPTIMIZATIONS:
self.sess = tf.Session()
else:
session_config = tf.ConfigProto()
rewrite_options = session_config.graph_options.rewrite_options
rewrite_options.disable_model_pruning = True
rewrite_options.constant_folding = rewrite_options.OFF
rewrite_options.arithmetic_optimization = rewrite_options.OFF
rewrite_options.remapping = rewrite_options.OFF
rewrite_options.shape_optimization = rewrite_options.OFF
rewrite_options.dependency_optimization = rewrite_options.OFF
rewrite_options.function_optimization = rewrite_options.OFF
rewrite_options.layout_optimizer = rewrite_options.OFF
rewrite_options.loop_optimization = rewrite_options.OFF
rewrite_options.memory_optimization = rewrite_options.NO_MEM_OPT
self.sess = tf.Session(config=session_config)
# Restore or initialize the variables.
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
示例7: create_session_config
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def create_session_config(log_device_placement=False,
enable_graph_rewriter=False,
gpu_mem_fraction=0.95,
use_tpu=False,
xla_jit_level=tf.OptimizerOptions.OFF,
inter_op_parallelism_threads=0,
intra_op_parallelism_threads=0):
"""The TensorFlow Session config to use."""
if use_tpu:
graph_options = tf.GraphOptions()
else:
if enable_graph_rewriter:
rewrite_options = rewriter_config_pb2.RewriterConfig()
rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
else:
graph_options = tf.GraphOptions(
optimizer_options=tf.OptimizerOptions(
opt_level=tf.OptimizerOptions.L1,
do_function_inlining=False,
global_jit_level=xla_jit_level))
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)
config = tf.ConfigProto(
allow_soft_placement=True,
graph_options=graph_options,
gpu_options=gpu_options,
log_device_placement=log_device_placement,
inter_op_parallelism_threads=inter_op_parallelism_threads,
intra_op_parallelism_threads=intra_op_parallelism_threads,
isolate_session_state=True)
return config
示例8: encode
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def encode(wav_data, checkpoint_path, sample_length=64000):
"""Generate an array of encodings from an array of audio.
Args:
wav_data: Numpy array [batch_size, sample_length]
checkpoint_path: Location of the pretrained model.
sample_length: The total length of the final wave file, padded with 0s.
Returns:
encoding: a [mb, 125, 16] encoding (for 64000 sample audio file).
"""
if wav_data.ndim == 1:
wav_data = np.expand_dims(wav_data, 0)
batch_size = wav_data.shape[0]
# Load up the model for encoding and find the encoding of "wav_data"
session_config = tf.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.allow_growth = True
with tf.Graph().as_default(), tf.Session(config=session_config) as sess:
hop_length = Config().ae_hop_length
wav_data, sample_length = utils.trim_for_encoding(wav_data, sample_length,
hop_length)
net = load_nsynth(batch_size=batch_size, sample_length=sample_length)
saver = tf.train.Saver()
saver.restore(sess, checkpoint_path)
encodings = sess.run(net["encoding"], feed_dict={net["X"]: wav_data})
return encodings
示例9: generate_session_config
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def generate_session_config() -> tf.ConfigProto:
"""
Generate a ConfigProto to use for ML-Agents that doesn't consume all of the GPU memory
and allows for soft placement in the case of multi-GPU.
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# For multi-GPU training, set allow_soft_placement to True to allow
# placing the operation into an alternative device automatically
# to prevent from exceptions if the device doesn't suppport the operation
# or the device does not exist
config.allow_soft_placement = True
return config
示例10: build_config
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def build_config(limit_gpu_fraction=0.2, limit_cpu_fraction=10):
if limit_gpu_fraction > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
gpu_options = GPUOptions(
allow_growth=True,
per_process_gpu_memory_fraction=limit_gpu_fraction)
config = ConfigProto(gpu_options=gpu_options)
else:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
config = ConfigProto(device_count={'GPU': 0})
if limit_cpu_fraction is not None:
if limit_cpu_fraction == 0:
cpu_count = 1
if limit_cpu_fraction < 0:
# -2 gives all CPUs except 1
cpu_count = max(
1, int(os.cpu_count() + limit_cpu_fraction + 1))
elif limit_cpu_fraction < 1:
# 0.5 gives 50% of available CPUs
cpu_count = max(
1, int(os.cpu_count() * limit_cpu_fraction))
else:
# 2 gives 2 CPUs
cpu_count = int(limit_cpu_fraction)
config.inter_op_parallelism_threads = cpu_count
config.intra_op_parallelism_threads = cpu_count
os.environ['OMP_NUM_THREADS'] = str(1)
os.environ['MKL_NUM_THREADS'] = str(cpu_count)
return config
示例11: get_session_config
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def get_session_config(self):
"""Get the Session tf.ConfigProto for Estimator model."""
示例12: start_tf_sess
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def start_tf_sess():
"""
Returns a tf.Session w/ config
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
示例13: make_session
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def make_session(config=None, num_cpu=None, make_default=False, graph=None):
"""Returns a session that will use <num_cpu> CPU's only"""
if num_cpu is None:
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
if config is None:
config = tf.ConfigProto(
allow_soft_placement=True,
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
config.gpu_options.allow_growth = True
if make_default:
return tf.InteractiveSession(config=config, graph=graph)
else:
return tf.Session(config=config, graph=graph)
示例14: _build_session
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def _build_session(self):
sess_config = tf.ConfigProto()
if self.use_xla:
sess_config.graph_options.optimizer_options.global_jit_level = (
tf.OptimizerOptions.ON_2)
return tf.Session(config=sess_config)
示例15: _lazily_initialize
# 需要導入模塊: from tensorflow.compat import v1 [as 別名]
# 或者: from tensorflow.compat.v1 import ConfigProto [as 別名]
def _lazily_initialize(self):
"""Initialize the graph and session, if this has not yet been done."""
# TODO(nickfelt): remove on-demand imports once dep situation is fixed.
import tensorflow.compat.v1 as tf
with self._initialization_lock:
if self._session:
return
graph = tf.Graph()
with graph.as_default():
self.initialize_graph()
# Don't reserve GPU because libpng can't run on GPU.
config = tf.ConfigProto(device_count={"GPU": 0})
self._session = tf.Session(graph=graph, config=config)