當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.colocate_with方法代碼示例

本文整理匯總了Python中tensorflow.colocate_with方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.colocate_with方法的具體用法?Python tensorflow.colocate_with怎麽用?Python tensorflow.colocate_with使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.colocate_with方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _finish

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _finish(self, update_ops, name_scope):
    """Updates beta_power variables every n batches and incrs counter."""
    iter_ = self._get_iter_variable()
    beta1_power, beta2_power = self._get_beta_accumulators()
    with tf.control_dependencies(update_ops):
      with tf.colocate_with(iter_):

        def update_beta_op():
          update_beta1 = beta1_power.assign(
              beta1_power * self._beta1_t,
              use_locking=self._use_locking)
          update_beta2 = beta2_power.assign(
              beta2_power * self._beta2_t,
              use_locking=self._use_locking)
          return tf.group(update_beta1, update_beta2)
        maybe_update_beta = tf.cond(
            tf.equal(iter_, 0), update_beta_op, tf.no_op)
        with tf.control_dependencies([maybe_update_beta]):
          update_iter = iter_.assign(tf.mod(iter_ + 1, self._n_t),
                                     use_locking=self._use_locking)
    return tf.group(
        *update_ops + [update_iter, maybe_update_beta], name=name_scope) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:24,代碼來源:multistep_optimizer.py

示例2: init_vq_bottleneck

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def init_vq_bottleneck(bottleneck_size, hidden_size):
  """Get lookup table for VQ bottleneck."""
  means = tf.get_variable(
      name="means",
      shape=[bottleneck_size, hidden_size],
      initializer=tf.uniform_unit_scaling_initializer())
  ema_count = tf.get_variable(
      name="ema_count",
      shape=[bottleneck_size],
      initializer=tf.constant_initializer(0),
      trainable=False)
  with tf.colocate_with(means):
    ema_means = tf.get_variable(
        name="ema_means",
        initializer=means.initialized_value(),
        trainable=False)

  return means, ema_means, ema_count 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:transformer_nat.py

示例3: get_vq_bottleneck

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def get_vq_bottleneck(bottleneck_size, hidden_size):
  """Get lookup table for VQ bottleneck."""
  with tf.variable_scope("vq", reuse=tf.AUTO_REUSE):
    means = tf.get_variable(
        name="means",
        shape=[bottleneck_size, hidden_size],
        initializer=tf.uniform_unit_scaling_initializer())

    ema_count = tf.get_variable(
        name="ema_count",
        shape=[bottleneck_size],
        initializer=tf.constant_initializer(0),
        trainable=False)

    with tf.colocate_with(means):
      ema_means = tf.get_variable(
          name="ema_means",
          initializer=means.initialized_value(),
          trainable=False)

  return means, ema_means, ema_count 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:discretization.py

示例4: get_vq_codebook

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def get_vq_codebook(codebook_size, hidden_size):
  """Get lookup table for VQ bottleneck."""
  with tf.variable_scope("vq", reuse=tf.AUTO_REUSE):
    means = tf.get_variable(
        name="means",
        shape=[codebook_size, hidden_size],
        initializer=tf.uniform_unit_scaling_initializer())

    ema_count = tf.get_variable(
        name="ema_count",
        shape=[codebook_size],
        initializer=tf.constant_initializer(0),
        trainable=False)

    with tf.colocate_with(means):
      ema_means = tf.get_variable(
          name="ema_means",
          initializer=means.initialized_value(),
          trainable=False)

  return means, ema_means, ema_count 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:discretization.py

示例5: _get_transformed_random_signs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _get_transformed_random_signs(self):
    if self.mat_type == "Fisher":
      mult_func = lambda loss, index: loss.multiply_fisher_factor(index)
      inner_shape_func = lambda loss: loss.fisher_factor_inner_shape
    elif self.mat_type == "GGN":
      mult_func = lambda loss, index: loss.multiply_ggn_factor(index)
      inner_shape_func = lambda loss: loss.ggn_factor_inner_shape

    transformed_random_signs = []
    for loss in self.layers.losses:
      with tf.colocate_with(self.layers.loss_colocation_ops[loss]):
        value = mult_func(loss,
                          utils.generate_random_signs(inner_shape_func(loss),
                                                      dtype=loss.dtype))
        coeff = tf.cast(self.layers.loss_coeffs[loss], dtype=value.dtype)
        transformed_random_signs.append(tf.sqrt(coeff) * value)
    return transformed_random_signs 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:19,代碼來源:estimator.py

示例6: eval_losses

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def eval_losses(self, target_mode="data", coeff_mode="regular"):
    """Returns evaluated losses (colocated with inputs to losses)."""
    evals = []
    for loss in self.losses:
      with tf.colocate_with(self.loss_colocation_ops[loss]):
        if target_mode == "data":
          loss_value = loss.evaluate()
        elif target_mode == "sample":
          loss_value = loss.evaluate_on_sample()
        else:
          raise ValueError("target_mode must be in ['data', 'sample']")

        if coeff_mode == "regular":
          multiplier = self.loss_coeffs[loss]
        elif coeff_mode == "sqrt":
          multiplier = tf.sqrt(self.loss_coeffs[loss])
        elif coeff_mode == "off":
          multiplier = 1.0
        else:
          raise ValueError("coeff_mode must be in ['regular', 'sqrt', 'off']")
        multiplier = tf.cast(multiplier, dtype=loss_value.dtype)
        evals.append(multiplier * loss_value)
    return evals 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:25,代碼來源:layer_collection.py

示例7: concat_all_device_tensors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def concat_all_device_tensors(self, all_device_tensors):
    """For each device, concatenate the device's tensors into a single tensor.

    Args:
      all_device_tensors: A list of list of tensors. `all_device_tensors[i][j]`
        is a tensor where `i` is the device index and `j` is the tensor index.

    Returns:
      A list of list of tensors in a similar form as all_device_tensors, except
      the tensors on each device have been concatenated. Each inner list
      consists of a single concatenated tensor.
    """
    assert self._next_method == 'concat'
    new_all_device_tensors = []
    tensor_states = []
    for device_tensors in all_device_tensors:
      with tf.colocate_with(device_tensors[0]):
        concat_tensor, tensor_state = self._concat_tensors(device_tensors)
        new_all_device_tensors.append([concat_tensor])
        tensor_states.append(tensor_state)
    self._tensor_states = tensor_states
    self._next_method = 'split'
    return new_all_device_tensors 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:25,代碼來源:batch_allreduce.py

示例8: find_state_op_colocation_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def find_state_op_colocation_error(graph, reported_tags=None):
  """Returns error message for colocation of state ops, or None if ok."""
  state_op_types = list_registered_stateful_ops_without_inputs(
      graph.as_graph_def())
  state_op_map = {op.name: op for op in graph.get_operations()
                  if op.type in state_op_types}
  for op in state_op_map.values():
    for colocation_group in op.colocation_groups():
      if not (colocation_group.startswith(tf.compat.as_bytes("loc:@")) and
              tf.compat.as_str_any(colocation_group[5:]) in state_op_map):
        tags_prefix = ("" if reported_tags is None else
                       "in the graph for tags %s, " % reported_tags)
        return (
            "A state-holding node x of a module's graph (e.g., a Variable op) "
            "must not be subject to a tf.colocate_with(y) constraint "
            "unless y is also a state-holding node.\n"
            "Details: %snode '%s' has op '%s', which counts as state-holding, "
            "but Operation.colocation_groups() == %s. " %
            (tags_prefix, op.name, op.type, op.colocation_groups()))
  return None 
開發者ID:tensorflow,項目名稱:hub,代碼行數:22,代碼來源:native_module.py

示例9: find_signature_inputs_from_multivalued_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def find_signature_inputs_from_multivalued_ops(inputs):
  """Returns error message for module inputs from ops with multiple outputs."""
  dense_inputs = []  # List of (str, Tensor), with SparseTensors decomposed.
  for name, tensor in sorted(inputs.items()):
    if isinstance(tensor, tf.SparseTensor):
      dense_inputs.extend(("%s.%s" % (name, attr), getattr(tensor, attr))
                          for attr in ("indices", "values", "dense_shape"))
    else:
      dense_inputs.append((name, tensor))
  warnings = [(name, tensor.name) for name, tensor in dense_inputs
              if len(tensor.op.outputs) != 1]
  if warnings:
    return (
        "WARNING: The inputs declared in hub.add_signature() should be tensors "
        "from ops with a single output, or else uses of tf.colocate_with() on "
        "that op can trigger fatal errors when the module is applied and "
        "colocation constraints have to be rewritten.\nAffected inputs: %s" %
        ", ".join("%s='%s'" % pair for pair in warnings))
  return None 
開發者ID:tensorflow,項目名稱:hub,代碼行數:21,代碼來源:native_module.py

示例10: _create_slots

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _create_slots(self, var_list):
    """Create slot variables for Adam with accumulated gradients."""
    super(MultistepAdamOptimizer, self)._create_slots(var_list)
    first_var = min(var_list, key=lambda x: x.name)
    self._create_non_slot_variable(initial_value=0 if self._n == 1 else 1,
                                   name="iter",
                                   colocate_with=first_var)
    for v in var_list:
      self._zeros_slot(v, "grad_acc", self._name) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:11,代碼來源:multistep_optimizer.py

示例11: testDiscreteBottleneckVQ

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def testDiscreteBottleneckVQ(self):
    hidden_size = 60
    z_size = 4
    x = tf.zeros(shape=[100, 1, hidden_size], dtype=tf.float32)
    with tf.variable_scope("test", reuse=tf.AUTO_REUSE):
      means = tf.get_variable("means",
                              shape=[1, 1, 2**z_size, hidden_size],
                              initializer=tf.constant_initializer(0.),
                              dtype=tf.float32)
      ema_count = []
      ema_count_i = tf.get_variable(
          "ema_count",
          [1, 2**z_size],
          initializer=tf.constant_initializer(0),
          trainable=False)
      ema_count.append(ema_count_i)
      ema_means = []
      with tf.colocate_with(means):
        ema_means_i = tf.get_variable("ema_means",
                                      initializer=means.initialized_value()[0],
                                      trainable=False)
        ema_means.append(ema_means_i)
      x_means_dense, x_means_hot, _, _, _ = discretization.discrete_bottleneck(
          x, hidden_size, z_size, 32, means=means, num_blocks=1,
          ema_means=ema_means, ema_count=ema_count, name="test")
      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())
        x_means_dense_eval, x_means_hot_eval = sess.run(
            [x_means_dense, x_means_hot])
        means_eval = sess.run(means)
      self.assertEqual(x_means_dense_eval.shape, (100, 1, hidden_size))
      self.assertEqual(x_means_hot_eval.shape, (100, 1))
      self.assertTrue(np.all(means_eval == np.zeros(
          (1, 1, 2**z_size, hidden_size)))) 
開發者ID:yyht,項目名稱:BERT,代碼行數:36,代碼來源:discretization_test.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def __init__(self, hparams):
    self.hparams = hparams
    print ("self.hparams.z_size", self.hparams.z_size)
    # Set the discretization bottleneck specific things here
    self.hparams.z_size_per_residual = self.hparams.z_size // \
                                       self.hparams.num_residuals
    print ("self.hparams.num_residuals", self.hparams.num_residuals)
    self.hparams.block_dim = int(
        self.hparams.hidden_size // self.hparams.num_blocks)
    self.hparams.block_v_size = 2**(
        self.hparams.z_size_per_residual / self.hparams.num_blocks)
    self.hparams.block_v_size = int(self.hparams.block_v_size)
    self.means = tf.get_variable(
        name="means",
        shape=[
            self.hparams.num_blocks, self.hparams.block_v_size,
            self.hparams.block_dim
        ],
        initializer=tf.initializers.variance_scaling(distribution="uniform"))

    # Create the shadow variables if we are using EMA
    if self.hparams.ema:
      self.ema_count = tf.get_variable(
          "ema_count", [self.hparams.num_blocks, self.hparams.block_v_size],
          initializer=tf.constant_initializer(0),
          trainable=False)
      with tf.colocate_with(self.means):
        self.ema_means = tf.get_variable(
            "ema_means",
            initializer=self.means.initialized_value(),
            trainable=False) 
開發者ID:yyht,項目名稱:BERT,代碼行數:33,代碼來源:vq_discrete.py

示例13: _update_velocities

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _update_velocities(self, vecs_and_vars, decay, vec_coeff=1.0):
    """Updates the velocities of the variables with the given vectors.

    Args:
      vecs_and_vars: List of (vector, variable) pairs.
      decay: How much to decay the old velocity by.  This is often referred to
        as the 'momentum constant'.
      vec_coeff: Coefficient to apply to the vectors before adding them to the
        velocity.

    Returns:
      A list of (velocity, var) indicating the new velocity for each var.
    """
    def _update_velocity(vec, var):
      velocity = self._zeros_slot(var, "velocity", self.get_name())
      with tf.colocate_with(velocity):
        # NOTE(mattjj): read/modify/write race condition not suitable for async.

        # Compute the new velocity for this variable.
        new_velocity = decay * velocity + vec_coeff * vec

        # Save the updated velocity.
        return (tf.identity(utils.smart_assign(velocity, new_velocity)), var)

    # Go through variable and update its associated part of the velocity vector.
    return [_update_velocity(vec, var) for vec, var in vecs_and_vars] 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:28,代碼來源:optimizer.py

示例14: _get_grads_lists_exact

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _get_grads_lists_exact(self, tensors):
    if self.mat_type == "Fisher":
      # pylint: disable=g-long-lambda
      mult_func = (lambda loss, index:
                   loss.multiply_fisher_factor_replicated_one_hot(index))
      inner_shape_func = lambda loss: loss.fisher_factor_inner_static_shape
    elif self.mat_type == "GGN":
      # pylint: disable=g-long-lambda
      mult_func = (lambda loss, index:
                   loss.multiply_ggn_factor_replicated_one_hot(index))
      inner_shape_func = lambda loss: loss.fisher_ggn_inner_static_shape

    # Loop over all coordinates of all losses.
    grads_all = []
    for loss in self.layers.losses:
      with tf.colocate_with(self.layers.loss_colocation_ops[loss]):
        for index in np.ndindex(*inner_shape_func(loss)[1:]):
          value = mult_func(loss, index)
          coeff = tf.cast(self.layers.loss_coeffs[loss], dtype=value.dtype)
          transformed_one_hot = tf.sqrt(coeff) * value
          grads_flat = tf.gradients(
              loss.inputs,
              nest.flatten(tensors),
              grad_ys=transformed_one_hot,
              colocate_gradients_with_ops=self._colocate_gradients_with_ops)
          grads_all.append(nest.pack_sequence_as(tensors, grads_flat))
    return tuple(zip(*grads_all)) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:29,代碼來源:estimator.py

示例15: _multiply_across_losses

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import colocate_with [as 別名]
def _multiply_across_losses(self, mult_func, vecs, coeff_mode="regular"):
    products = []
    for loss, vec in zip(self._losses, vecs):
      with tf.colocate_with(self._loss_colocation_ops[loss]):
        if coeff_mode == "regular":
          multiplier = self._get_loss_coeff(loss)
        elif coeff_mode == "sqrt":
          multiplier = tf.sqrt(self._get_loss_coeff(loss))
        val = mult_func(loss, vec)
        products.append(tf.cast(multiplier, dtype=val.dtype) * val)
    return tuple(products) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:13,代碼來源:curvature_matrix_vector_products.py


注:本文中的tensorflow.colocate_with方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。