當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.clip_by_value方法代碼示例

本文整理匯總了Python中tensorflow.clip_by_value方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.clip_by_value方法的具體用法?Python tensorflow.clip_by_value怎麽用?Python tensorflow.clip_by_value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.clip_by_value方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: random_adjust_hue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def random_adjust_hue(image, max_delta=0.02):
  """Randomly adjusts hue.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    max_delta: change hue randomly with a value between 0 and max_delta.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustHue', values=[image]):
    image = tf.image.random_hue(image, max_delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:preprocessor.py

示例2: visit_count_fc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def visit_count_fc(visit_count, last_visit, embed_neurons, wt_decay, fc_dropout):
  with tf.variable_scope('embed_visit_count'):
    visit_count = tf.reshape(visit_count, shape=[-1])
    last_visit = tf.reshape(last_visit, shape=[-1])
    
    visit_count = tf.clip_by_value(visit_count, clip_value_min=-1,
                                   clip_value_max=15)
    last_visit = tf.clip_by_value(last_visit, clip_value_min=-1,
                                   clip_value_max=15)
    visit_count = tf.one_hot(visit_count, depth=16, axis=1, dtype=tf.float32,
                             on_value=10., off_value=0.)
    last_visit = tf.one_hot(last_visit, depth=16, axis=1, dtype=tf.float32,
                             on_value=10., off_value=0.)
    f = tf.concat([visit_count, last_visit], 1)
    x, _ = tf_utils.fc_network(
        f, neurons=embed_neurons, wt_decay=wt_decay, name='visit_count_embed',
        offset=0, batch_norm_param=None, dropout_ratio=fc_dropout,
        is_training=is_training)
  return x 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:vision_baseline_lstm.py

示例3: random_adjust_brightness

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def random_adjust_brightness(image, max_delta=0.2):
  """Randomly adjusts brightness.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    max_delta: how much to change the brightness. A value between [0, 1).

  Returns:
    image: image which is the same shape as input image.
    boxes: boxes which is the same shape as input boxes.
  """
  with tf.name_scope('RandomAdjustBrightness', values=[image]):
    image = tf.image.random_brightness(image, max_delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:preprocessor.py

示例4: random_adjust_contrast

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def random_adjust_contrast(image, min_delta=0.8, max_delta=1.25):
  """Randomly adjusts contrast.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    min_delta: see max_delta.
    max_delta: how much to change the contrast. Contrast will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current contrast of the image.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustContrast', values=[image]):
    image = tf.image.random_contrast(image, min_delta, max_delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:preprocessor.py

示例5: random_adjust_saturation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def random_adjust_saturation(image, min_delta=0.8, max_delta=1.25):
  """Randomly adjusts saturation.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    min_delta: see max_delta.
    max_delta: how much to change the saturation. Saturation will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current saturation of the image.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustSaturation', values=[image]):
    image = tf.image.random_saturation(image, min_delta, max_delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:preprocessor.py

示例6: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def call(self, inputs):
        mean_and_log_std = self.model(inputs)
        mean, log_std = tf.split(mean_and_log_std, num_or_size_splits=2, axis=1)
        log_std = tf.clip_by_value(log_std, -20., 2.)
        
        distribution = tfp.distributions.MultivariateNormalDiag(
            loc=mean,
            scale_diag=tf.exp(log_std)
        )
        
        raw_actions = distribution.sample()
        if not self._reparameterize:
            ### Problem 1.3.A
            ### YOUR CODE HERE
            raw_actions = tf.stop_gradient(raw_actions)
        log_probs = distribution.log_prob(raw_actions)
        log_probs -= self._squash_correction(raw_actions)

        ### Problem 2.A
        ### YOUR CODE HERE
        self.actions = tf.tanh(raw_actions)
            
        return self.actions, log_probs 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:25,代碼來源:nn.py

示例7: setup_critic_optimizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def setup_critic_optimizer(self):
        logger.info('setting up critic optimizer')
        normalized_critic_target_tf = tf.clip_by_value(normalize(self.critic_target, self.ret_rms), self.return_range[0], self.return_range[1])
        self.critic_loss = tf.reduce_mean(tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
        if self.critic_l2_reg > 0.:
            critic_reg_vars = [var for var in self.critic.trainable_vars if 'kernel' in var.name and 'output' not in var.name]
            for var in critic_reg_vars:
                logger.info('  regularizing: {}'.format(var.name))
            logger.info('  applying l2 regularization with {}'.format(self.critic_l2_reg))
            critic_reg = tc.layers.apply_regularization(
                tc.layers.l2_regularizer(self.critic_l2_reg),
                weights_list=critic_reg_vars
            )
            self.critic_loss += critic_reg
        critic_shapes = [var.get_shape().as_list() for var in self.critic.trainable_vars]
        critic_nb_params = sum([reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
        logger.info('  critic shapes: {}'.format(critic_shapes))
        logger.info('  critic params: {}'.format(critic_nb_params))
        self.critic_grads = U.flatgrad(self.critic_loss, self.critic.trainable_vars, clip_norm=self.clip_norm)
        self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
            beta1=0.9, beta2=0.999, epsilon=1e-08) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:23,代碼來源:ddpg.py

示例8: block35

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 35x35 resnet block."""
  with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
    with tf.variable_scope('Branch_2'):
      tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
      tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
      tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')
    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:26,代碼來源:inception_resnet_v2.py

示例9: block17

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 17x17 resnet block."""
  with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
                                  scope='Conv2d_0b_1x7')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
                                  scope='Conv2d_0c_7x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')

    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:26,代碼來源:inception_resnet_v2.py

示例10: block8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
  """Builds the 8x8 resnet block."""
  with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
    with tf.variable_scope('Branch_0'):
      tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
    with tf.variable_scope('Branch_1'):
      tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
      tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
                                  scope='Conv2d_0b_1x3')
      tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
                                  scope='Conv2d_0c_3x1')
    mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
    up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
                     activation_fn=None, scope='Conv2d_1x1')

    scaled_up = up * scale
    if activation_fn == tf.nn.relu6:
      # Use clip_by_value to simulate bandpass activation.
      scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)

    net += scaled_up
    if activation_fn:
      net = activation_fn(net)
  return net 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:26,代碼來源:inception_resnet_v2.py

示例11: _clip_if_not_None

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def _clip_if_not_None(self, g, v, low, high):
        """ Clip not-None gradients to (low, high). """
        """ Gradient of T is None if T not connected to the objective. """
        if g is not None:
            return (tf.clip_by_value(g, low, high), v)
        else:
            return (g, v) 
開發者ID:fanyangxyz,項目名稱:Neural-LP,代碼行數:9,代碼來源:model.py

示例12: lerp_clip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def lerp_clip(a, b, t):
    with tf.name_scope('LerpClip'):
        return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:5,代碼來源:tfutil.py

示例13: lerp_clip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def lerp_clip(a, b, t): return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:3,代碼來源:networks.py

示例14: build_pgd_attack

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def build_pgd_attack(self, eps):
        victim_embeddings = tf.constant(self.victim_embeddings, dtype=tf.float32)

        def one_step_attack(image, grad):
            """
            core components of this attack are:
            (a) PGD adversarial attack (https://arxiv.org/pdf/1706.06083.pdf)
            (b) momentum (https://arxiv.org/pdf/1710.06081.pdf)
            (c) input diversity (https://arxiv.org/pdf/1803.06978.pdf)
            """
            orig_image = image
            image = self.structure(image)
            image = (image - 127.5) / 128.0
            image = image + tf.random_uniform(tf.shape(image), minval=-1e-2, maxval=1e-2)
            prelogits, _ = self.network.inference(image, 1.0, False, bottleneck_layer_size=512)
            embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

            embeddings = tf.reshape(embeddings[0], [512, 1])
            objective = tf.reduce_mean(tf.matmul(victim_embeddings, embeddings))  # to be maximized

            noise, = tf.gradients(objective, orig_image)

            noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True)
            noise = 0.9 * grad + noise

            adv = tf.clip_by_value(orig_image + tf.sign(noise) * 1.0, lower_bound, upper_bound)
            return adv, noise

        input = tf.to_float(self.image_batch)
        lower_bound = tf.clip_by_value(input - eps, 0, 255.)
        upper_bound = tf.clip_by_value(input + eps, 0, 255.)

        with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
            adv, _ = tf.while_loop(
                lambda _, __: True, one_step_attack,
                (input, tf.zeros_like(input)),
                back_prop=False,
                maximum_iterations=100,
                parallel_iterations=1)
        self.adv_image = adv
        return adv 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:43,代碼來源:face_attack.py

示例15: attack_single_step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_value [as 別名]
def attack_single_step(self, x, eta, y):
        """
        Given the original image and the perturbation computed so far, computes
        a new perturbation.

        :param x: A tensor with the original input.
        :param eta: A tensor the same shape as x that holds the perturbation.
        :param y: A tensor with the target labels or ground-truth labels.
        """
        import tensorflow as tf
        from cleverhans.utils_tf import clip_eta
        from cleverhans.loss import attack_softmax_cross_entropy

        adv_x = x + eta
        logits = self.model.get_logits(adv_x)
        loss = attack_softmax_cross_entropy(y, logits)
        if self.targeted:
            loss = -loss
        grad, = tf.gradients(loss, adv_x)
        scaled_signed_grad = self.eps_iter * tf.sign(grad)
        adv_x = adv_x + scaled_signed_grad
        if self.clip_min is not None and self.clip_max is not None:
            adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max)
        eta = adv_x - x
        eta = clip_eta(eta, self.ord, self.eps)
        return eta 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:28,代碼來源:attacks.py


注:本文中的tensorflow.clip_by_value方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。