當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.clip_by_average_norm方法代碼示例

本文整理匯總了Python中tensorflow.clip_by_average_norm方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.clip_by_average_norm方法的具體用法?Python tensorflow.clip_by_average_norm怎麽用?Python tensorflow.clip_by_average_norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.clip_by_average_norm方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testClipByAverageNormClipped

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def testClipByAverageNormClipped(self):
    # Norm clipping when average clip_norm < 0.83333333
    with self.test_session():
      x = tf.constant([-3.0, 0.0, 0.0, 4.0, 0.0, 0.0], shape=[2, 3])
      # Average norm of x = sqrt(3^2 + 4^2) / 6 = 0.83333333
      np_ans = [[-2.88, 0.0, 0.0],
                [3.84, 0.0, 0.0]]
      clip_norm = 0.8
      ans = tf.clip_by_average_norm(x, clip_norm)
      tf_ans = ans.eval()

    self.assertAllClose(np_ans, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:clip_ops_test.py

示例2: testClipByAverageNormClippedTensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def testClipByAverageNormClippedTensor(self):
    # Norm clipping when average clip_norm < 0.83333333
    with self.test_session():
      x = tf.constant([-3.0, 0.0, 0.0, 4.0, 0.0, 0.0], shape=[2, 3])
      # Average norm of x = sqrt(3^2 + 4^2) / 6 = 0.83333333
      np_ans = [[-2.88, 0.0, 0.0],
                [3.84, 0.0, 0.0]]
      clip_norm = tf.constant(0.8)
      ans = tf.clip_by_average_norm(x, clip_norm)
      tf_ans = ans.eval()

    self.assertAllClose(np_ans, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:clip_ops_test.py

示例3: testClipByAverageNormNotClipped

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def testClipByAverageNormNotClipped(self):
    # No norm clipping when average clip_norm >= 0.83333333
    with self.test_session():
      x = tf.constant([-3.0, 0.0, 0.0, 4.0, 0.0, 0.0], shape=[2, 3])
      # Average norm of x = sqrt(3^2 + 4^2) / 6 = 0.83333333
      np_ans = [[-3.0, 0.0, 0.0],
                [4.0, 0.0, 0.0]]
      clip_norm = 0.9
      ans = tf.clip_by_average_norm(x, clip_norm)
      tf_ans = ans.eval()

    self.assertAllClose(np_ans, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:clip_ops_test.py

示例4: testClipByAverageNormZero

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def testClipByAverageNormZero(self):
    # No norm clipping when average clip_norm = 0
    with self.test_session():
      x = tf.constant([0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=[2, 3])
      # Average norm = 0, no changes
      np_ans = [[0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0]]
      clip_norm = 0.9
      ans = tf.clip_by_average_norm(x, clip_norm)
      tf_ans = ans.eval()

    self.assertAllClose(np_ans, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:clip_ops_test.py

示例5: average_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def average_gradients(self, tower_grads):
        average_grads = []
        for grad_and_vars in zip(*tower_grads):
            # Note that each grad_and_vars looks like the following:
            #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
            grads = []
            # Average over the 'tower' dimension.
            g, _ = grad_and_vars[0]

            for g, _ in grad_and_vars:
                expanded_g = tf.expand_dims(g, 0)
                grads.append(expanded_g)
            grad = tf.concat(grads, axis=0)
            grad = tf.reduce_mean(grad, 0)

            # Keep in mind that the Variables are redundant because they are shared
            # across towers. So .. we will just return the first tower's pointer to
            # the Variable.
            v = grad_and_vars[0][1]
            grad_and_var = (grad, v)
            average_grads.append(grad_and_var)
        # clip
        if self.cfg.clip_gradient:
            gradients, variables = zip(*average_grads)
            gradients = [
                None if gradient is None else tf.clip_by_average_norm(gradient, self.cfg.clip_gradient_value)
                for gradient in gradients]
            average_grads = zip(gradients, variables)
        return average_grads 
開發者ID:z-x-yang,項目名稱:NS-Outpainting,代碼行數:31,代碼來源:loss.py

示例6: _clip_grads

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def _clip_grads(self, grads):
        if self.clip_norm_type == 'ignore':
            return grads
        elif self.clip_norm_type == 'global':
            return tf.clip_by_global_norm(grads, self.clip_norm)[0]
        elif self.clip_norm_type == 'avg':
            return tf.clip_by_average_norm(grads, self.clip_norm)[0]
        elif self.clip_norm_type == 'local':
            return [tf.clip_by_norm(g, self.clip_norm)
                    for g in grads] 
開發者ID:steveKapturowski,項目名稱:tensorflow-rl,代碼行數:12,代碼來源:network.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def __init__(self, nA,
                 learning_rate,decay,grad_clip,entropy_beta,
                 state_shape=[84,84,4],
                 master=None, device_name='/gpu:0', scope_name='master'):
        with tf.device(device_name) :
            self.state = tf.placeholder(tf.float32,[None]+state_shape)
            block, self.scope  = ActorCritic._build_shared_block(self.state,scope_name)
            self.policy, self.log_softmax_policy = ActorCritic._build_policy(block,nA,scope_name)
            self.value = ActorCritic._build_value(block,scope_name)

            self.train_vars = sorted(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope.name), key=lambda v:v.name)
            if( master is not None ) :
                self.sync_op= self._sync_op(master)
                self.action = tf.placeholder(tf.int32,[None,])
                self.target_value = tf.placeholder(tf.float32,[None,])

                advantage = self.target_value - self.value
                entropy = tf.reduce_sum(-1. * self.policy * self.log_softmax_policy,axis=1)
                log_p_s_a = tf.reduce_sum(self.log_softmax_policy * tf.one_hot(self.action,nA),axis=1)

                self.policy_loss = tf.reduce_mean(tf.stop_gradient(advantage)*log_p_s_a)
                self.entropy_loss = tf.reduce_mean(entropy)
                self.value_loss = tf.reduce_mean(advantage**2)

                loss = -self.policy_loss - entropy_beta* self.entropy_loss + self.value_loss
                self.gradients = tf.gradients(loss,self.train_vars)
                clipped_gs = [tf.clip_by_average_norm(g,grad_clip) for g in self.gradients]
                self.train_op = master.optimizer.apply_gradients(zip(clipped_gs,master.train_vars))
            else :
                #self.optimizer = tf.train.AdamOptimizer(learning_rate,beta1=BETA)
                self.optimizer = tf.train.RMSPropOptimizer(learning_rate,decay=decay,use_locking=True) 
開發者ID:hiwonjoon,項目名稱:tf-a3c-gpu,代碼行數:33,代碼來源:network.py

示例8: get_gradient_clip_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def get_gradient_clip_fn(hparams=None):
    """Creates a gradient clipping function based on the hyperparameters.

    See the :attr:`gradient_clip` field in
    :meth:`~texar.core.default_optimization_hparams` for all
    hyperparameters and default values.

    The gradient clipping function takes a list of `(gradients, variables)`
    tuples and returns a list of `(clipped_gradients, variables)` tuples.
    Typical examples include
    :tf_main:`tf.clip_by_global_norm <clip_by_global_norm>`,
    :tf_main:`tf.clip_by_value <clip_by_value>`,
    :tf_main:`tf.clip_by_norm <clip_by_norm>`,
    :tf_main:`tf.clip_by_average_norm <clip_by_average_norm>`, etc.

    Args:
        hparams (dict or HParams, optional): hyperparameters. Missing
            hyperparameters are set to default values automatically.

    Returns:
        function or `None`: If hparams["type"] is specified, returns
        the respective function. If hparams["type"] is empty,
        returns `None`.
    """
    if hparams is None or isinstance(hparams, dict):
        hparams = HParams(
            hparams, default_optimization_hparams()["gradient_clip"])
    fn_type = hparams["type"]
    if fn_type is None or fn_type == "":
        return None

    fn_modules = ["tensorflow", "texar.custom"]
    clip_fn = utils.get_function(fn_type, fn_modules)
    clip_fn_args = utils.get_args(clip_fn)
    fn_kwargs = hparams["kwargs"]
    if isinstance(fn_kwargs, HParams):
        fn_kwargs = fn_kwargs.todict()

    def grad_clip_fn(grads_and_vars):
        """Gradient clipping function.

        Args:
            grads_and_vars (list): A list of `(gradients, variables)` tuples.

        Returns:
            list: A list of `(clipped_gradients, variables)` tuples.
        """
        grads, vars_ = zip(*grads_and_vars)
        if clip_fn == tf.clip_by_global_norm:
            clipped_grads, _ = clip_fn(t_list=grads, **fn_kwargs)
        elif 't_list' in clip_fn_args:
            clipped_grads = clip_fn(t_list=grads, **fn_kwargs)
        elif 't' in clip_fn_args:     # e.g., tf.clip_by_value
            clipped_grads = [clip_fn(t=grad, **fn_kwargs) for grad in grads]

        return list(zip(clipped_grads, vars_))

    return grad_clip_fn 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:60,代碼來源:optimization.py

示例9: get_gradient_clip_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import clip_by_average_norm [as 別名]
def get_gradient_clip_fn(hparams=None):
    """Creates a gradient clipping function based on the hyperparameters.

    See the :attr:`gradient_clip` field in
    :meth:`~texar.tf.core.default_optimization_hparams` for all
    hyperparameters and default values.

    The gradient clipping function takes a list of `(gradients, variables)`
    tuples and returns a list of `(clipped_gradients, variables)` tuples.
    Typical examples include
    :tf_main:`tf.clip_by_global_norm <clip_by_global_norm>`,
    :tf_main:`tf.clip_by_value <clip_by_value>`,
    :tf_main:`tf.clip_by_norm <clip_by_norm>`,
    :tf_main:`tf.clip_by_average_norm <clip_by_average_norm>`, etc.

    Args:
        hparams (dict or HParams, optional): hyperparameters. Missing
            hyperparameters are set to default values automatically.

    Returns:
        function or `None`: If hparams["type"] is specified, returns
        the respective function. If hparams["type"] is empty,
        returns `None`.
    """
    if hparams is None or isinstance(hparams, dict):
        hparams = HParams(
            hparams, default_optimization_hparams()["gradient_clip"])
    fn_type = hparams["type"]
    if fn_type is None or fn_type == "":
        return None

    fn_modules = ["tensorflow", "texar.tf.custom"]
    clip_fn = utils.get_function(fn_type, fn_modules)
    clip_fn_args = utils.get_args(clip_fn)
    fn_kwargs = hparams["kwargs"]
    if isinstance(fn_kwargs, HParams):
        fn_kwargs = fn_kwargs.todict()

    def grad_clip_fn(grads_and_vars):
        """Gradient clipping function.

        Args:
            grads_and_vars (list): A list of `(gradients, variables)` tuples.

        Returns:
            list: A list of `(clipped_gradients, variables)` tuples.
        """
        grads, vars_ = zip(*grads_and_vars)
        if clip_fn == tf.clip_by_global_norm:
            clipped_grads, _ = clip_fn(t_list=grads, **fn_kwargs)
        elif 't_list' in clip_fn_args:
            clipped_grads = clip_fn(t_list=grads, **fn_kwargs)
        elif 't' in clip_fn_args:     # e.g., tf.clip_by_value
            clipped_grads = [clip_fn(t=grad, **fn_kwargs) for grad in grads]

        return list(zip(clipped_grads, vars_))

    return grad_clip_fn 
開發者ID:asyml,項目名稱:texar,代碼行數:60,代碼來源:optimization.py


注:本文中的tensorflow.clip_by_average_norm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。