當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.check_numerics方法代碼示例

本文整理匯總了Python中tensorflow.check_numerics方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.check_numerics方法的具體用法?Python tensorflow.check_numerics怎麽用?Python tensorflow.check_numerics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.check_numerics方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _BuildLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _BuildLoss(self):
    # 1. reconstr_loss seems doesn't do better than l2 loss.
    # 2. Only works when using reduce_mean. reduce_sum doesn't work.
    # 3. It seems kl loss doesn't play an important role.
    self.loss = 0
    with tf.variable_scope('loss'):
      if self.params['l2_loss']:
        l2_loss = tf.reduce_mean(tf.square(self.diff_output - self.diffs[1]))
        tf.summary.scalar('l2_loss', l2_loss)
        self.loss += l2_loss
      if self.params['reconstr_loss']:
        reconstr_loss = (-tf.reduce_mean(
            self.diffs[1] * (1e-10 + self.diff_output) +
            (1-self.diffs[1]) * tf.log(1e-10 + 1 - self.diff_output)))
        reconstr_loss = tf.check_numerics(reconstr_loss, 'reconstr_loss')
        tf.summary.scalar('reconstr_loss', reconstr_loss)
        self.loss += reconstr_loss
      if self.params['kl_loss']:
        kl_loss = (0.5 * tf.reduce_mean(
            tf.square(self.z_mean) + tf.square(self.z_stddev) -
            2 * self.z_stddev_log - 1))
        tf.summary.scalar('kl_loss', kl_loss)
        self.loss += kl_loss

      tf.summary.scalar('loss', self.loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例2: _value_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _value_loss(self, observ, reward, length):
    """Compute the loss function for the value baseline.

    The value loss is the difference between empirical and approximated returns
    over the collected episodes. Returns the loss tensor and a summary strin.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Tuple of loss tensor and summary tensor.
    """
    with tf.name_scope('value_loss'):
      value = self._network(observ, length).value
      return_ = utility.discounted_return(
          reward, length, self._config.discount)
      advantage = return_ - value
      value_loss = 0.5 * self._mask(advantage ** 2, length)
      summary = tf.summary.merge([
          tf.summary.histogram('value_loss', value_loss),
          tf.summary.scalar('avg_value_loss', tf.reduce_mean(value_loss))])
      value_loss = tf.reduce_mean(value_loss)
      return tf.check_numerics(value_loss, 'value_loss'), summary 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:algorithm.py

示例3: _mask

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _mask(self, tensor, length):
    """Set padding elements of a batch of sequences to zero.

    Useful to then safely sum along the time dimension.

    Args:
      tensor: Tensor of sequences.
      length: Batch of sequence lengths.

    Returns:
      Masked sequences.
    """
    with tf.name_scope('mask'):
      range_ = tf.range(tensor.shape[1].value)
      mask = tf.cast(range_[None, :] < length[:, None], tf.float32)
      masked = tensor * mask
      return tf.check_numerics(masked, 'masked') 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:19,代碼來源:algorithm.py

示例4: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = self._parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      return tf.group(
          self._observ.assign(observ),
          self._action.assign(action),
          self._reward.assign(reward),
          self._done.assign(done)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:in_graph_batch_env.py

示例5: reset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:in_graph_batch_env.py

示例6: calculate_generalized_advantage_estimator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  """Generalized advantage estimator."""

  # Below is slight weirdness, we set the last reward to 0.
  # This makes the advantage to be 0 in the last timestep
  reward = tf.concat([reward[:-1, :], value[-1:, :]], axis=0)
  next_value = tf.concat([value[1:, :], tf.zeros_like(value[-1:, :])], axis=0)
  next_not_done = 1 - tf.cast(tf.concat([done[1:, :],
                                         tf.zeros_like(done[-1:, :])], axis=0),
                              tf.float32)
  delta = reward + gae_gamma * next_value * next_not_done - value

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:ppo.py

示例7: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      reward.set_shape((len(self),))
      done.set_shape((len(self),))
      with tf.control_dependencies([self._observ.assign(observ)]):
        return tf.identity(reward), tf.identity(done) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:py_func_batch_env.py

示例8: _reset_non_empty

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _reset_non_empty(self, indices):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ)]):
      return tf.identity(observ) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:py_func_batch_env.py

示例9: get_acceptance_rate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def get_acceptance_rate(q, p, new_q, new_p, log_posterior, mass, data_axes):
    old_hamiltonian, old_log_prob = hamiltonian(
        q, p, log_posterior, mass, data_axes)
    new_hamiltonian, new_log_prob = hamiltonian(
        new_q, new_p, log_posterior, mass, data_axes)
    old_log_prob = tf.check_numerics(
        old_log_prob,
        'HMC: old_log_prob has numeric errors! Try better initialization.')
    acceptance_rate = tf.exp(
        tf.minimum(-new_hamiltonian + old_hamiltonian, 0.0))
    is_finite = tf.logical_and(tf.is_finite(acceptance_rate),
                               tf.is_finite(new_log_prob))
    acceptance_rate = tf.where(is_finite, acceptance_rate,
                               tf.zeros_like(acceptance_rate))
    return old_hamiltonian, new_hamiltonian, old_log_prob, new_log_prob, \
        acceptance_rate 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:18,代碼來源:hmc.py

示例10: _log_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _log_prob(self, given):
        mean, cov_tril = (self.path_param(self.mean),
                          self.path_param(self.cov_tril))
        log_det = 2 * tf.reduce_sum(
            tf.log(tf.matrix_diag_part(cov_tril)), axis=-1)
        n_dim = tf.cast(self._n_dim, self.dtype)
        log_z = - n_dim / 2 * tf.log(
            2 * tf.constant(np.pi, dtype=self.dtype)) - log_det / 2
        # log_z.shape == batch_shape
        if self._check_numerics:
            log_z = tf.check_numerics(log_z, "log[det(Cov)]")
        # (given-mean)' Sigma^{-1} (given-mean) =
        # (g-m)' L^{-T} L^{-1} (g-m) = |x|^2, where Lx = g-m =: y.
        y = tf.expand_dims(given - mean, -1)
        L, _ = maybe_explicit_broadcast(
            cov_tril, y, 'MultivariateNormalCholesky.cov_tril',
            'expand_dims(given, -1)')
        x = tf.matrix_triangular_solve(L, y, lower=True)
        x = tf.squeeze(x, -1)
        stoc_dist = -0.5 * tf.reduce_sum(tf.square(x), axis=-1)
        return log_z + stoc_dist 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:23,代碼來源:multivariate.py

示例11: _log_prob

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _log_prob(self, given):
        # TODO: not right when given=0 or 1
        alpha, beta = self.alpha, self.beta
        log_given = tf.log(given)
        log_1_minus_given = tf.log(1 - given)
        lgamma_alpha, lgamma_beta = tf.lgamma(alpha), tf.lgamma(beta)
        lgamma_alpha_plus_beta = tf.lgamma(alpha + beta)

        if self._check_numerics:
            log_given = tf.check_numerics(log_given, "log(given)")
            log_1_minus_given = tf.check_numerics(
                log_1_minus_given, "log(1 - given)")
            lgamma_alpha = tf.check_numerics(lgamma_alpha, "lgamma(alpha)")
            lgamma_beta = tf.check_numerics(lgamma_beta, "lgamma(beta)")
            lgamma_alpha_plus_beta = tf.check_numerics(
                lgamma_alpha_plus_beta, "lgamma(alpha + beta)")

        return (alpha - 1) * log_given + (beta - 1) * log_1_minus_given - (
            lgamma_alpha + lgamma_beta - lgamma_alpha_plus_beta) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:21,代碼來源:univariate.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def __init__(self,
                 rate,
                 dtype=tf.int32,
                 group_ndims=0,
                 check_numerics=False,
                 **kwargs):
        self._rate = tf.convert_to_tensor(rate)
        param_dtype = assert_same_float_dtype(
            [(self._rate, 'Poisson.rate')])

        assert_dtype_is_int_or_float(dtype)

        self._check_numerics = check_numerics

        super(Poisson, self).__init__(
            dtype=dtype,
            param_dtype=param_dtype,
            is_continuous=False,
            is_reparameterized=False,
            group_ndims=group_ndims,
            **kwargs) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:23,代碼來源:univariate.py

示例13: calculate_generalized_advantage_estimator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def calculate_generalized_advantage_estimator(
    reward, value, done, gae_gamma, gae_lambda):
  # pylint: disable=g-doc-args
  """Generalized advantage estimator.

  Returns:
    GAE estimator. It will be one element shorter than the input; this is
    because to compute GAE for [0, ..., N-1] one needs V for [1, ..., N].
  """
  # pylint: enable=g-doc-args

  next_value = value[1:, :]
  next_not_done = 1 - tf.cast(done[1:, :], tf.float32)
  delta = (reward[:-1, :] + gae_gamma * next_value * next_not_done
           - value[:-1, :])

  return_ = tf.reverse(tf.scan(
      lambda agg, cur: cur[0] + cur[1] * gae_gamma * gae_lambda * agg,
      [tf.reverse(delta, [0]), tf.reverse(next_not_done, [0])],
      tf.zeros_like(delta[0, :]),
      parallel_iterations=1), [0])
  return tf.check_numerics(return_, "return") 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:ppo.py

示例14: layer_normalize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def layer_normalize(tensor):
	'''Apologies if I've abused this term'''

	in_shape = tf.shape(tensor)
	axes = list(range(1, len(tensor.shape)))

	# Keep batch axis
	t = tf.reduce_sum(tensor, axis=axes )
	t += EPSILON
	t = tf.reciprocal(t)
	t = tf.check_numerics(t, "1/sum")

	tensor = tf.einsum('brc,b->brc', tensor, t)

	tensor = dynamic_assert_shape(tensor, in_shape, "layer_normalize_tensor")
	return tensor 
開發者ID:Octavian-ai,項目名稱:shortest-path,代碼行數:18,代碼來源:messaging_cell_helpers.py

示例15: _u_to_v

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import check_numerics [as 別名]
def _u_to_v(self, log_alpha, u, eps = 1e-8):
    """Convert u to tied randomness in v."""
    u_prime = tf.nn.sigmoid(-log_alpha)  # g(u') = 0

    v_1 = (u - u_prime) / tf.clip_by_value(1 - u_prime, eps, 1)
    v_1 = tf.clip_by_value(v_1, 0, 1)
    v_1 = tf.stop_gradient(v_1)
    v_1 = v_1*(1 - u_prime) + u_prime
    v_0 = u / tf.clip_by_value(u_prime, eps, 1)
    v_0 = tf.clip_by_value(v_0, 0, 1)
    v_0 = tf.stop_gradient(v_0)
    v_0 = v_0 * u_prime

    v = tf.where(u > u_prime, v_1, v_0)
    v = tf.check_numerics(v, 'v sampling is not numerically stable.')
    v = v + tf.stop_gradient(-v + u)  # v and u are the same up to numerical errors

    return v 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:20,代碼來源:rebar.py


注:本文中的tensorflow.check_numerics方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。