本文整理匯總了Python中tensorflow.broadcast_to方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.broadcast_to方法的具體用法?Python tensorflow.broadcast_to怎麽用?Python tensorflow.broadcast_to使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.broadcast_to方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: broadcast_iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def broadcast_iou(box_1, box_2):
# box_1: (..., (x1, y1, x2, y2))
# box_2: (N, (x1, y1, x2, y2))
# broadcast boxes
box_1 = tf.expand_dims(box_1, -2)
box_2 = tf.expand_dims(box_2, 0)
# new_shape: (..., N, (x1, y1, x2, y2))
new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.shape(box_2))
box_1 = tf.broadcast_to(box_1, new_shape)
box_2 = tf.broadcast_to(box_2, new_shape)
int_w = tf.maximum(tf.minimum(box_1[..., 2], box_2[..., 2]) - tf.maximum(box_1[..., 0], box_2[..., 0]), 0)
int_h = tf.maximum(tf.minimum(box_1[..., 3], box_2[..., 3]) - tf.maximum(box_1[..., 1], box_2[..., 1]), 0)
int_area = int_w * int_h
box_1_area = (box_1[..., 2] - box_1[..., 0]) * (box_1[..., 3] - box_1[..., 1])
box_2_area = (box_2[..., 2] - box_2[..., 0]) * (box_2[..., 3] - box_2[..., 1])
return int_area / (box_1_area + box_2_area - int_area)
示例2: test_energy_identity
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def test_energy_identity(self):
"""Checks that energy evaluated between the rest pose and itself is zero."""
number_vertices = np.random.randint(3, 10)
batch_size = np.random.randint(3)
batch_shape = np.random.randint(1, 10, size=(batch_size)).tolist()
vertices_rest_pose = np.random.uniform(size=(number_vertices, 3))
vertices_deformed_pose = tf.broadcast_to(
vertices_rest_pose, shape=batch_shape + [number_vertices, 3])
quaternions = quaternion.from_euler(
np.zeros(shape=batch_shape + [number_vertices, 3]))
num_edges = int(round(number_vertices / 2))
edges = np.zeros(shape=(num_edges, 2), dtype=np.int32)
edges[..., 0] = np.linspace(
0, number_vertices / 2 - 1, num_edges, dtype=np.int32)
edges[..., 1] = np.linspace(
number_vertices / 2, number_vertices - 1, num_edges, dtype=np.int32)
energy = as_conformal_as_possible.energy(
vertices_rest_pose=vertices_rest_pose,
vertices_deformed_pose=vertices_deformed_pose,
quaternions=quaternions,
edges=edges,
conformal_energy=False)
self.assertAllClose(energy, tf.zeros_like(energy))
示例3: _broadcast_to_x_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def _broadcast_to_x_shape(x, y):
"""Broadcasts y to same shape as x as needed.
Args:
x: An input feature.
y: A feature that is either the same shape as x or has the same outer
dimensions as x. If the latter, y is broadcast to the same shape as x.
Returns:
A Tensor that contains the broadcasted feature, y.
"""
# The batch dimension of x and y must be the same, and y must be 1D.
x_shape = tf.shape(input=x)
y_shape = tf.shape(input=y)
assert_eq = tf.compat.v1.assert_equal(x_shape[0], y_shape[0])
with tf.control_dependencies([assert_eq]):
y = tf.identity(y)
rank_delta = tf.rank(x) - tf.rank(y)
target_shape = tf.concat(
[tf.shape(y), tf.ones(rank_delta, dtype=tf.int32)], axis=0)
matched_rank = tf.reshape(y, target_shape)
return tf.broadcast_to(matched_rank, x_shape)
示例4: test_agent_is_checkpointable
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def test_agent_is_checkpointable(self):
agent = networks.ImpalaDeep(9)
output0 = _run_actor(agent)
checkpoint_dir = '/tmp/training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'model.ckpt')
ckpt = tf.train.Checkpoint(agent=agent)
ckpt.save(file_prefix=checkpoint_prefix)
for v in agent.trainable_variables:
v.assign_add(tf.broadcast_to(1., v.shape))
output1 = _run_actor(agent)
ckpt_path = tf.train.latest_checkpoint(checkpoint_dir)
ckpt.restore(ckpt_path).assert_consumed()
output2 = _run_actor(agent)
self.assertEqual(len(agent.trainable_variables), 39)
self.assertAllEqual(output0[0].policy_logits, output2[0].policy_logits)
self.assertNotAllEqual(output0[0].policy_logits, output1[0].policy_logits)
示例5: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def __call__(self):
"""Get the distribution object from the backend"""
if get_backend() == 'pytorch':
import torch.distributions as tod
raise NotImplementedError
else:
import tensorflow as tf
from tensorflow_probability import distributions as tfd
# Convert to tensorflow distributions if probflow distributions
if isinstance(self.distributions, BaseDistribution):
self.distributions = self.distributions()
# Broadcast probs/logits
shape = self.distributions.batch_shape
args = {'logits': None, 'probs': None}
if self.logits is not None:
args['logits'] = tf.broadcast_to(self['logits'], shape)
else:
args['probs'] = tf.broadcast_to(self['probs'], shape)
# Return TFP distribution object
return tfd.MixtureSameFamily(
tfd.Categorical(**args),
self.distributions)
示例6: _save_model_with_obscurely_shaped_list_output
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def _save_model_with_obscurely_shaped_list_output(export_dir):
"""Writes SavedModel with hard-to-predict output shapes."""
def broadcast_obscurely_to(input, shape):
"""Like tf.broadcast_to(), but hostile to static shape propagation."""
obscured_shape = tf.cast(tf.cast(shape, tf.float32)
# Add small random noise that gets rounded away.
+ 0.1*tf.sin(tf.random.uniform((), -3, +3)) + 0.3,
tf.int32)
return tf.broadcast_to(input, obscured_shape)
@tf.function(
input_signature=[tf.TensorSpec(shape=(None, 1), dtype=tf.float32)])
def call_fn(x):
# For each batch element x, the three outputs are
# value x with shape (1)
# value 2*x broadcast to shape (2,2)
# value 3*x broadcast to shape (3,3,3)
batch_size = tf.shape(x)[0]
return [broadcast_obscurely_to(tf.reshape(i*x, [batch_size] + [1]*i),
tf.concat([[batch_size], [i]*i], axis=0))
for i in range(1, 4)]
obj = tf.train.Checkpoint()
obj.__call__ = call_fn
tf.saved_model.save(obj, export_dir)
示例7: broadcast_iou
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def broadcast_iou(box_1, box_2):
# box_1: (..., (x1, y1, x2, y2))
# box_2: (N, (x1, y1, x2, y2))
# broadcast boxes
box_1 = tf.expand_dims(box_1, -2)
box_2 = tf.expand_dims(box_2, 0)
# new_shape: (..., N, (x1, y1, x2, y2))
new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.shape(box_2))
box_1 = tf.broadcast_to(box_1, new_shape)
box_2 = tf.broadcast_to(box_2, new_shape)
int_w = tf.maximum(tf.minimum(box_1[..., 2], box_2[..., 2]) -
tf.maximum(box_1[..., 0], box_2[..., 0]), 0)
int_h = tf.maximum(tf.minimum(box_1[..., 3], box_2[..., 3]) -
tf.maximum(box_1[..., 1], box_2[..., 1]), 0)
int_area = int_w * int_h
box_1_area = (box_1[..., 2] - box_1[..., 0]) * \
(box_1[..., 3] - box_1[..., 1])
box_2_area = (box_2[..., 2] - box_2[..., 0]) * \
(box_2[..., 3] - box_2[..., 1])
return int_area / (box_1_area + box_2_area - int_area)
示例8: _normalize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def _normalize(image, mean_rgb=MEAN_RGB, stddev_rgb=STDDEV_RGB):
"""Normalizes images to variance 1 and mean 0 over the whole dataset"""
image -= tf.broadcast_to(mean_rgb, tf.shape(image))
image /= tf.broadcast_to(stddev_rgb, tf.shape(image))
return image
示例9: sort_key_val
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def sort_key_val(t1, t2, dim=-1):
values = tf.sort(t1, axis=dim)
t2 = tf.broadcast_to(t2, t1.shape)
return values, tf.gather(t2, tf.argsort(t1, axis=dim), axis=dim)
示例10: __call__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def __call__(self, x):
"""Computes regularization using an unbiased Monte Carlo estimate."""
prior = ed.Independent(
ed.HalfCauchy(
loc=tf.broadcast_to(self.loc, x.distribution.event_shape),
scale=tf.broadcast_to(self.scale, x.distribution.event_shape)
).distribution,
reinterpreted_batch_ndims=len(x.distribution.event_shape))
negative_entropy = x.distribution.log_prob(x)
cross_entropy = -prior.distribution.log_prob(x)
return negative_entropy + cross_entropy
示例11: parameter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def parameter(input_var,
length,
initializer=tf.zeros_initializer(),
dtype=tf.float32,
trainable=True,
name='parameter'):
"""Parameter layer.
Used as layer that could be broadcast to a certain shape to
match with input variable during training.
For recurrent usage, use garage.tf.models.recurrent_parameter().
Example: A trainable parameter variable with shape (2,), it needs to be
broadcasted to (32, 2) when applied to a batch with size 32.
Args:
input_var (tf.Tensor): Input tf.Tensor.
length (int): Integer dimension of the variable.
initializer (callable): Initializer of the variable. The function
should return a tf.Tensor.
dtype: Data type of the variable (default is tf.float32).
trainable (bool): Whether the variable is trainable.
name (str): Variable scope of the variable.
Return:
A tensor of the broadcasted variables.
"""
with tf.compat.v1.variable_scope(name):
p = tf.compat.v1.get_variable('parameter',
shape=(length, ),
dtype=dtype,
initializer=initializer,
trainable=trainable)
batch_dim = tf.shape(input_var)[0]
broadcast_shape = tf.concat(axis=0, values=[[batch_dim], [length]])
p_broadcast = tf.broadcast_to(p, shape=broadcast_shape)
return p_broadcast
示例12: eval_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def eval_image(image, height, width, resize_method,
central_fraction=0.875, scope=None):
with tf.compat.v1.name_scope('eval_image'):
if resize_method == 'crop':
shape = tf.shape(input=image)
image = tf.cond(pred=tf.less(shape[0], shape[1]),
true_fn=lambda: tf.image.resize(image,
tf.convert_to_tensor(value=[256, 256 * shape[1] / shape[0]],
dtype=tf.int32)),
false_fn=lambda: tf.image.resize(image,
tf.convert_to_tensor(value=[256 * shape[0] / shape[1], 256],
dtype=tf.int32)))
shape = tf.shape(input=image)
y0 = (shape[0] - height) // 2
x0 = (shape[1] - width) // 2
distorted_image = tf.image.crop_to_bounding_box(image, y0, x0, height, width)
distorted_image.set_shape([height, width, 3])
means = tf.broadcast_to([123.68, 116.78, 103.94], tf.shape(input=distorted_image))
return distorted_image - means
else: # bilinear
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Crop the central region of the image with an area containing 87.5% of
# the original image.
if central_fraction:
image = tf.image.central_crop(image, central_fraction=central_fraction)
if height and width:
# Resize the image to the specified height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize(image, [height, width],
method=tf.image.ResizeMethod.BILINEAR)
image = tf.squeeze(image, [0])
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
示例13: eval_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def eval_image(image, height, width, resize_method,
central_fraction=0.875, scope=None):
with tf.compat.v1.name_scope('eval_image'):
if resize_method == 'crop':
shape = tf.shape(input=image)
image = tf.cond(pred=tf.less(shape[0], shape[1]),
true_fn=lambda: tf.image.resize(image,
tf.convert_to_tensor(value=[256, 256 * shape[1] / shape[0]],
dtype=tf.int32)),
false_fn=lambda: tf.image.resize(image,
tf.convert_to_tensor(value=[256 * shape[0] / shape[1], 256],
dtype=tf.int32)))
shape = tf.shape(input=image)
y0 = (shape[0] - height) // 2
x0 = (shape[1] - width) // 2
distorted_image = tf.image.crop_to_bounding_box(image, y0, x0, height, width)
distorted_image.set_shape([height, width, 3])
means = tf.broadcast_to([123.68, 116.78, 103.94], tf.shape(input=distorted_image))
return distorted_image - means
else: # bilinear
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Crop the central region of the image with an area containing 87.5% of
# the original image.
if central_fraction:
image = tf.image.central_crop(image, central_fraction=central_fraction)
if height and width:
# Resize the image to the specified height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize(image, [height, width],
method=tf.image.ResizeMethod.BILINEAR)
image = tf.squeeze(image, [0])
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
示例14: test_rotate_zonal_harmonics_random
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def test_rotate_zonal_harmonics_random(self):
"""Tests the outputs of test_rotate_zonal_harmonics."""
dtype = tf.float64
max_band = 2
zonal_coeffs = tf.constant(
np.random.uniform(-1.0, 1.0, size=[3]), dtype=dtype)
tensor_size = np.random.randint(3)
tensor_shape = np.random.randint(1, 10, size=(tensor_size)).tolist()
theta = tf.constant(
np.random.uniform(0.0, np.pi, size=tensor_shape + [1]), dtype=dtype)
phi = tf.constant(
np.random.uniform(0.0, 2.0 * np.pi, size=tensor_shape + [1]),
dtype=dtype)
rotated_zonal_coeffs = spherical_harmonics.rotate_zonal_harmonics(
zonal_coeffs, theta, phi)
zonal_coeffs = spherical_harmonics.tile_zonal_coefficients(zonal_coeffs)
l, m = spherical_harmonics.generate_l_m_permutations(max_band)
l = tf.broadcast_to(l, tensor_shape + l.shape.as_list())
m = tf.broadcast_to(m, tensor_shape + m.shape.as_list())
theta_zero = tf.constant(0.0, shape=tensor_shape + [1], dtype=dtype)
phi_zero = tf.constant(0.0, shape=tensor_shape + [1], dtype=dtype)
gt = zonal_coeffs * spherical_harmonics.evaluate_spherical_harmonics(
l, m, theta_zero, phi_zero)
gt = tf.reduce_sum(input_tensor=gt, axis=-1)
pred = rotated_zonal_coeffs * spherical_harmonics.evaluate_spherical_harmonics(
l, m, theta + theta_zero, phi + phi_zero)
pred = tf.reduce_sum(input_tensor=pred, axis=-1)
self.assertAllClose(gt, pred)
示例15: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import broadcast_to [as 別名]
def call(self, x, y, training=None):
x = self.up(x)
x = self.bn(x, training=None)
w_conf = tf.nn.softmax(x)
axis = get_channel_axis(self.data_format)
w_max = tf.broadcast_to(tf.expand_dims(tf.reduce_max(w_conf, axis=axis), axis=axis), shape=x.shape)
x = y * (1 - w_max) + x
return x