當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.boolean_mask方法代碼示例

本文整理匯總了Python中tensorflow.boolean_mask方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.boolean_mask方法的具體用法?Python tensorflow.boolean_mask怎麽用?Python tensorflow.boolean_mask使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.boolean_mask方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: yolo_filter_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold = .6):    
    # Compute box scores
    box_scores = box_confidence * box_class_probs
    
    # Find the box_classes thanks to the max box_scores, keep track of the corresponding score
    box_classes = K.argmax(box_scores, axis=-1)
    box_class_scores = K.max(box_scores, axis=-1, keepdims=False)
    
    # Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the
    # same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold)
    filtering_mask = box_class_scores >= threshold
    
    # Apply the mask to scores, boxes and classes
    scores = tf.boolean_mask(box_class_scores, filtering_mask)
    boxes = tf.boolean_mask(boxes, filtering_mask)
    classes = tf.boolean_mask(box_classes, filtering_mask)
    
    return scores, boxes, classes 
開發者ID:kaka-lin,項目名稱:object-detection,代碼行數:20,代碼來源:test_tiny_yolo.py

示例2: char_predictions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def char_predictions(self, chars_logit):
    """Returns confidence scores (softmax values) for predicted characters.

    Args:
      chars_logit: chars logits, a tensor with shape
        [batch_size x seq_length x num_char_classes]

    Returns:
      A tuple (ids, log_prob, scores), where:
        ids - predicted characters, a int32 tensor with shape
          [batch_size x seq_length];
        log_prob - a log probability of all characters, a float tensor with
          shape [batch_size, seq_length, num_char_classes];
        scores - corresponding confidence scores for characters, a float
        tensor
          with shape [batch_size x seq_length].
    """
    log_prob = utils.logits_to_log_prob(chars_logit)
    ids = tf.to_int32(tf.argmax(log_prob, dimension=2), name='predicted_chars')
    mask = tf.cast(
        slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
    all_scores = tf.nn.softmax(chars_logit)
    selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
    scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
    return ids, log_prob, scores 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例3: yolo_nms

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def yolo_nms(outputs, anchors, masks, num_classes, iou_threshold=0.6, score_threshold=0.15):
    boxes, confs, classes = [], [], []

    for o in outputs:
        boxes.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1])))
        confs.append(tf.reshape(o[1], (tf.shape(o[0])[0], -1, tf.shape(o[1])[-1])))
        classes.append(tf.reshape(o[2], (tf.shape(o[0])[0], -1, tf.shape(o[2])[-1])))
    boxes = tf.concat(boxes, axis=1)
    confs = tf.concat(confs, axis=1)
    class_probs = tf.concat(classes, axis=1)
    box_scores = confs * class_probs
    mask = box_scores >= score_threshold
    mask = tf.reduce_any(mask, axis=-1)

    class_boxes = tf.boolean_mask(boxes, mask)
    class_boxes = tf.reshape(class_boxes, (tf.shape(boxes)[0], -1, 4))
    class_box_scores = tf.boolean_mask(box_scores, mask)
    class_box_scores = tf.reshape(class_box_scores, (tf.shape(boxes)[0], -1, num_classes))

    class_boxes, class_box_scores = tf.py_function(func=batched_nms,
                                                   inp=[class_boxes, class_box_scores, num_classes, iou_threshold],
                                                   Tout=[tf.float32, tf.float32])
    classes = tf.argmax(class_box_scores, axis=-1)

    return class_boxes, class_box_scores, classes 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:27,代碼來源:models.py

示例4: _get_refined_encodings_for_postitive_class

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def _get_refined_encodings_for_postitive_class(
      self, refined_box_encodings, flat_cls_targets_with_background,
      batch_size):
    # We only predict refined location encodings for the non background
    # classes, but we now pad it to make it compatible with the class
    # predictions
    refined_box_encodings_with_background = tf.pad(refined_box_encodings,
                                                   [[0, 0], [1, 0], [0, 0]])
    refined_box_encodings_masked_by_class_targets = (
        box_list_ops.boolean_mask(
            box_list.BoxList(
                tf.reshape(refined_box_encodings_with_background,
                           [-1, self._box_coder.code_size])),
            tf.reshape(tf.greater(flat_cls_targets_with_background, 0), [-1]),
            use_static_shapes=self._use_static_shapes,
            indicator_sum=batch_size * self.max_num_proposals
            if self._use_static_shapes else None).get())
    return tf.reshape(
        refined_box_encodings_masked_by_class_targets, [
            batch_size, self.max_num_proposals,
            self._box_coder.code_size
        ]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:faster_rcnn_meta_arch.py

示例5: filter_out_of_bound_boxes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def filter_out_of_bound_boxes(boxes, feature_shape, stride):
    """
    過濾圖像邊框外的anchor
    :param boxes: [n,y1,x1,y2,x2]
    :param feature_shape: 特征圖的長寬 [h,w]
    :param stride: 網絡步長
    :return:
    """
    # 圖像原始長寬為特征圖長寬*步長
    h, w = feature_shape[0], feature_shape[1]
    h = tf.cast(h * stride, tf.float32)
    w = tf.cast(w * stride, tf.float32)

    valid_boxes_tag = tf.logical_and(tf.logical_and(tf.logical_and(boxes[:, 0] >= 0,
                                                                   boxes[:, 1] >= 0),
                                                    boxes[:, 2] <= h),
                                     boxes[:, 3] <= w)
    boxes = tf.boolean_mask(boxes, valid_boxes_tag)
    valid_boxes_indices = tf.where(valid_boxes_tag)[:, 0]
    return boxes, valid_boxes_indices 
開發者ID:yizt,項目名稱:keras-ctpn,代碼行數:22,代碼來源:anchor.py

示例6: reflection

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def reflection(data, decision):
  """Conditionally reflects the data in XYZ.

  Args:
    data: input tensor, shape: [..], z, y, x, c
    decision: boolean tensor, shape 3, indicating on which spatial dimensions
       to apply the reflection (x, y, z)

  Returns:
    TF op to conditionally apply reflection.
  """
  with tf.name_scope('augment_reflection'):
    rank = data.get_shape().ndims
    spatial_dims = tf.constant([rank - 2, rank - 3, rank - 4])
    selected_dims = tf.boolean_mask(spatial_dims, decision)
    return tf.reverse(data, selected_dims) 
開發者ID:google,項目名稱:ffn,代碼行數:18,代碼來源:augmentation.py

示例7: bboxes_filter_overlap

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def bboxes_filter_overlap(labels, bboxes,
                          threshold=0.5, assign_negative=False,
                          scope=None):
    """Filter out bounding boxes based on (relative )overlap with reference
    box [0, 0, 1, 1].  Remove completely bounding boxes, or assign negative
    labels to the one outside (useful for latter processing...).
    Return:
      labels, bboxes: Filtered (or newly assigned) elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        scores = bboxes_intersection(tf.constant([0, 0, 1, 1], bboxes.dtype),
                                     bboxes)
        mask = scores > threshold
        mask.set_shape([None])
        if assign_negative:
            labels = tf.where(mask, labels, -labels)
            # bboxes = tf.where(mask, bboxes, bboxes)
        else:
            labels = tf.boolean_mask(labels, mask)
            bboxes = tf.boolean_mask(bboxes, mask)
        return labels, bboxes 
開發者ID:lambdal,項目名稱:lambda-deep-learning-demo,代碼行數:23,代碼來源:ssd_augmenter.py

示例8: _last_relevant

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def _last_relevant(outputs, sequence_length):
        """Deprecated"""
        batch_size = tf.shape(outputs)[0]
        max_length = outputs.get_shape()[1]
        output_size = outputs.get_shape()[2]
        index = tf.range(0, batch_size) * max_length + (sequence_length - 1)
        flat = tf.reshape(outputs, [-1, output_size])
        last_timesteps = tf.gather(flat, index)  # very slow
        # mask = tf.sign(index)
        # last_timesteps = tf.boolean_mask(flat, mask)
        # # Creating a vector of 0s and 1s that will specify what timesteps to choose.
        # partitions = tf.reduce_sum(tf.one_hot(index, tf.shape(flat)[0], dtype='int32'), 0)
        # # Selecting the elements we want to choose.
        # _, last_timesteps = tf.dynamic_partition(flat, partitions, 2)  # (batch_size, n_dim)
        # https://stackoverflow.com/questions/35892412/tensorflow-dense-gradient-explanation
        return last_timesteps 
開發者ID:Lapis-Hong,項目名稱:atec-nlp,代碼行數:18,代碼來源:encoder.py

示例9: bboxes_filter_overlap

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def bboxes_filter_overlap(labels, bboxes,xs, ys, threshold, scope=None, assign_negative = False):
    """Filter out bounding boxes based on (relative )overlap with reference
    box [0, 0, 1, 1].  Remove completely bounding boxes, or assign negative
    labels to the one outside (useful for latter processing...).

    Return:
      labels, bboxes: Filtered (or newly assigned) elements.
    """
    with tf.name_scope(scope, 'bboxes_filter', [labels, bboxes]):
        scores = bboxes_intersection(tf.constant([0, 0, 1, 1], bboxes.dtype),bboxes)
                    
        mask = scores > threshold
        if assign_negative:
            labels = tf.where(mask, labels, -labels)
        else:
            labels = tf.boolean_mask(labels, mask)
            bboxes = tf.boolean_mask(bboxes, mask)
            scores = bboxes_intersection(tf.constant([0, 0, 1, 1], bboxes.dtype),bboxes)
            xs = tf.boolean_mask(xs, mask);
            ys = tf.boolean_mask(ys, mask);
        return labels, bboxes, xs, ys 
開發者ID:dengdan,項目名稱:seglink,代碼行數:23,代碼來源:bboxes.py

示例10: repeat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def repeat(x, repeats):
    """
    Repeats elements of a Tensor (equivalent to np.repeat, but only for 1D
    tensors).
    :param x: rank 1 Tensor;
    :param repeats: rank 1 Tensor with same shape as x, the number of
    repetitions for each element;
    :return: rank 1 Tensor, of shape `(sum(repeats), )`.
    """
    x = tf.expand_dims(x, 1)
    max_repeats = tf.reduce_max(repeats)
    tile_repeats = [1, max_repeats]
    arr_tiled = tf.tile(x, tile_repeats)
    mask = tf.less(tf.range(max_repeats), tf.expand_dims(repeats, 1))
    result = tf.reshape(tf.boolean_mask(arr_tiled, mask), [-1])
    return result 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:18,代碼來源:ops.py

示例11: corrupt_single_relationship

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def corrupt_single_relationship(triple: tf.Tensor,
                                all_triples: tf.Tensor,
                                max_range: int,
                                name=None):
    """ Corrupt the relationship by __sampling from [0, max_range]

    :param triple:
    :param all_triples:
    :param max_range:
    :param name:
    :return: corrupted 1-d [h,r,t] triple
    """
    with tf.name_scope(name, 'corrupt_single_relation', [triple, all_triples]):
        h, r, t = tf.unstack(triple, name='unstack_triple')

        head_mask = tf.equal(all_triples[:, 0], h, name='head_mask')
        head_matched_triples = tf.boolean_mask(all_triples[:, 1:], head_mask, name='head_matched_triples')

        tail_mask = tf.equal(head_matched_triples[:, 1], t, name='tail_mask')
        true_rels = tf.boolean_mask(head_matched_triples[:, 0], tail_mask)

        corrupted_rel = tf.reshape(single_negative_sampling(true_rels, max_range), ())

        return tf.stack([h, corrupted_rel, t], name='rel_corrupted_triple') 
開發者ID:bxshi,項目名稱:ConMask,代碼行數:26,代碼來源:corruption.py

示例12: _common

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def _common(cls, node, **kwargs):
    attrs = copy.deepcopy(node.attrs)
    tensor_dict = kwargs["tensor_dict"]
    x = tensor_dict[node.inputs[0]]
    condition = tensor_dict[node.inputs[1]]

    x = tf.reshape(x, [-1]) if node.attrs.get("axis") is None else x
    if condition.shape.is_fully_defined():
      condition_shape = condition.shape[0]
      indices = tf.constant(list(range(condition_shape)), dtype=tf.int64)
    else:
      condition_shape = tf.shape(condition, out_type=tf.int64)[0]
      indices = tf.range(condition_shape, dtype=tf.int64)
    not_zero = tf.not_equal(condition, tf.zeros_like(condition))
    attrs['indices'] = tf.boolean_mask(indices, not_zero)
    return [
        cls.make_tensor_from_onnx_node(node, inputs=[x], attrs=attrs, **kwargs)
    ] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:20,代碼來源:compress.py

示例13: add_loss_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def add_loss_op(self):
        """Defines the loss"""
        if self.config.use_crf:
            log_likelihood, trans_params = tf.contrib.crf.crf_log_likelihood(
                    self.logits, self.labels, self.sequence_lengths)
            self.trans_params = trans_params # need to evaluate it for decoding
            self.loss = tf.reduce_mean(-log_likelihood)
        else:
            losses = tf.nn.sparse_softmax_cross_entropy_with_logits(
                    logits=self.logits, labels=self.labels)
            mask = tf.sequence_mask(self.sequence_lengths)
            losses = tf.boolean_mask(losses, mask)
            self.loss = tf.reduce_mean(losses)

        # for tensorboard
        tf.summary.scalar("loss", self.loss) 
開發者ID:ijmarshall,項目名稱:robotreviewer,代碼行數:18,代碼來源:ner_model.py

示例14: flatten_binary_scores

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def flatten_binary_scores(scores, labels, ignore=None):
    """
    Flattens predictions in the batch (binary case)
    Remove labels equal to 'ignore'
    """
    scores = tf.reshape(scores, (-1,))
    labels = tf.reshape(labels, (-1,))
    if ignore is None:
        return scores, labels
    valid = tf.not_equal(labels, ignore)
    vscores = tf.boolean_mask(scores, valid, name='valid_scores')
    vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
    return vscores, vlabels


# --------------------------- MULTICLASS LOSSES --------------------------- 
開發者ID:sercant,項目名稱:mobile-segmentation,代碼行數:18,代碼來源:loss.py

示例15: flatten_probas

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import boolean_mask [as 別名]
def flatten_probas(probas, labels, ignore=None, order='BHWC'):
    """
    Flattens predictions in the batch
    """
    if len(probas.shape) == 3:
        probas, order = tf.expand_dims(probas, 3), 'BHWC'
    if order == 'BCHW':
        probas = tf.transpose(probas, (0, 2, 3, 1), name="BCHW_to_BHWC")
        order = 'BHWC'
    if order != 'BHWC':
        raise NotImplementedError('Order {} unknown'.format(order))
    C = probas.shape[3]
    probas = tf.reshape(probas, (-1, C))
    labels = tf.reshape(labels, (-1,))
    if ignore is None:
        return probas, labels
    valid = tf.not_equal(labels, ignore)
    vprobas = tf.boolean_mask(probas, valid, name='valid_probas')
    vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
    return vprobas, vlabels 
開發者ID:sercant,項目名稱:mobile-segmentation,代碼行數:22,代碼來源:loss.py


注:本文中的tensorflow.boolean_mask方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。