當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.bool方法代碼示例

本文整理匯總了Python中tensorflow.bool方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.bool方法的具體用法?Python tensorflow.bool怎麽用?Python tensorflow.bool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.bool方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: network_surgery

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def network_surgery():
    tf.reset_default_graph()
    inputs = tf.placeholder(tf.float32,
                            shape=(None, 131072, 4),
                            name='inputs')
    targets = tf.placeholder(tf.float32, shape=(None, 1024, 4229),
                             name='targets')
    targets_na = tf.placeholder(tf.bool, shape=(None, 1024), name="targets_na")
    preds_adhoc = tf.placeholder(tf.float32, shape=(None, 960, 4229), name="Placeholder_15")


    saver = tf.train.import_meta_graph("model_files/model.tf.meta",
                                       input_map={'Placeholder_15:0': preds_adhoc,
                                                  'Placeholder:0': targets_na,
                                                  'inputs:0': inputs,
                                                  'targets:0': targets
                                       })

    ops = tf.get_default_graph().get_operations()

    out = tf.train.export_meta_graph(filename='model_files/model.tf-modified.meta', as_text=True)

    ops[:15] 
開發者ID:kipoi,項目名稱:models,代碼行數:25,代碼來源:test_model.py

示例2: char_predictions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def char_predictions(self, chars_logit):
    """Returns confidence scores (softmax values) for predicted characters.

    Args:
      chars_logit: chars logits, a tensor with shape
        [batch_size x seq_length x num_char_classes]

    Returns:
      A tuple (ids, log_prob, scores), where:
        ids - predicted characters, a int32 tensor with shape
          [batch_size x seq_length];
        log_prob - a log probability of all characters, a float tensor with
          shape [batch_size, seq_length, num_char_classes];
        scores - corresponding confidence scores for characters, a float
        tensor
          with shape [batch_size x seq_length].
    """
    log_prob = utils.logits_to_log_prob(chars_logit)
    ids = tf.to_int32(tf.argmax(log_prob, dimension=2), name='predicted_chars')
    mask = tf.cast(
        slim.one_hot_encoding(ids, self._params.num_char_classes), tf.bool)
    all_scores = tf.nn.softmax(chars_logit)
    selected_scores = tf.boolean_mask(all_scores, mask, name='char_scores')
    scores = tf.reshape(selected_scores, shape=(-1, self._params.seq_length))
    return ids, log_prob, scores 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:model.py

示例3: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def __init__(self,
               optimizer1,
               optimizer2,
               switch,
               use_locking=False,
               name='Composite'):
    """Construct a new Composite optimizer.

    Args:
      optimizer1: A tf.python.training.optimizer.Optimizer object.
      optimizer2: A tf.python.training.optimizer.Optimizer object.
      switch: A tf.bool Tensor, selecting whether to use the first or the second
        optimizer.
      use_locking: Bool. If True apply use locks to prevent concurrent updates
        to variables.
      name: Optional name prefix for the operations created when applying
        gradients.  Defaults to "Composite".
    """
    super(CompositeOptimizer, self).__init__(use_locking, name)
    self._optimizer1 = optimizer1
    self._optimizer2 = optimizer2
    self._switch = switch 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:composite_optimizer.py

示例4: _reshape_instance_masks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width] and cast to boolean type to save memory.

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D boolean tensor of shape [num_instances, height, width].
    """
    masks = keys_to_tensors['image/segmentation/object']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)

    return tf.cast(tf.reshape(masks, to_shape), tf.bool) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:tf_example_decoder.py

示例5: _padded_batched_proposals_indicator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def _padded_batched_proposals_indicator(self,
                                          num_proposals,
                                          max_num_proposals):
    """Creates indicator matrix of non-pad elements of padded batch proposals.

    Args:
      num_proposals: Tensor of type tf.int32 with shape [batch_size].
      max_num_proposals: Maximum number of proposals per image (integer).

    Returns:
      A Tensor of type tf.bool with shape [batch_size, max_num_proposals].
    """
    batch_size = tf.size(num_proposals)
    tiled_num_proposals = tf.tile(
        tf.expand_dims(num_proposals, 1), [1, max_num_proposals])
    tiled_proposal_index = tf.tile(
        tf.expand_dims(tf.range(max_num_proposals), 0), [batch_size, 1])
    return tf.greater(tiled_num_proposals, tiled_proposal_index) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:faster_rcnn_meta_arch.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def __init__(self, logdir, step=None, log=None, report=None, reset=None):
    """Execute operations in a loop and coordinate logging and checkpoints.

    The step, log, report, and report arguments will get created if not
    provided. Reset is used to indicate switching to a new phase, so that the
    model can start a new computation in case its computation is split over
    multiple training steps.

    Args:
      logdir: Will contain checkpoints and summaries for each phase.
      step: Variable of the global step (optional).
      log: Tensor indicating to the model to compute summary tensors.
      report: Tensor indicating to the loop to report the current mean score.
      reset: Tensor indicating to the model to start a new computation.
    """
    self._logdir = logdir
    self._step = (
        tf.Variable(0, False, name='global_step') if step is None else step)
    self._log = tf.placeholder(tf.bool) if log is None else log
    self._report = tf.placeholder(tf.bool) if report is None else report
    self._reset = tf.placeholder(tf.bool) if reset is None else reset
    self._phases = [] 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:loop.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def __init__(self, batch_env):
    """Batch of environments inside the TensorFlow graph.

    Args:
      batch_env: Batch environment.
    """
    self._batch_env = batch_env
    observ_shape = self._parse_shape(self._batch_env.observation_space)
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    action_shape = self._parse_shape(self._batch_env.action_space)
    action_dtype = self._parse_dtype(self._batch_env.action_space)
    with tf.variable_scope('env_temporary'):
      self._observ = tf.Variable(
          tf.zeros((len(self._batch_env),) + observ_shape, observ_dtype),
          name='observ', trainable=False)
      self._action = tf.Variable(
          tf.zeros((len(self._batch_env),) + action_shape, action_dtype),
          name='action', trainable=False)
      self._reward = tf.Variable(
          tf.zeros((len(self._batch_env),), tf.float32),
          name='reward', trainable=False)
      self._done = tf.Variable(
          tf.cast(tf.ones((len(self._batch_env),)), tf.bool),
          name='done', trainable=False) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:26,代碼來源:in_graph_batch_env.py

示例8: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = self._parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      return tf.group(
          self._observ.assign(observ),
          self._action.assign(action),
          self._reward.assign(reward),
          self._done.assign(done)) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:in_graph_batch_env.py

示例9: reset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:in_graph_batch_env.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def __init__(self, env):
    """Put an OpenAI Gym environment into the TensorFlow graph.

    Args:
      env: OpenAI Gym environment.
    """
    self._env = env
    observ_shape = self._parse_shape(self._env.observation_space)
    observ_dtype = self._parse_dtype(self._env.observation_space)
    action_shape = self._parse_shape(self._env.action_space)
    action_dtype = self._parse_dtype(self._env.action_space)
    with tf.name_scope('environment'):
      self._observ = tf.Variable(
          tf.zeros(observ_shape, observ_dtype), name='observ', trainable=False)
      self._action = tf.Variable(
          tf.zeros(action_shape, action_dtype), name='action', trainable=False)
      self._reward = tf.Variable(
          0.0, dtype=tf.float32, name='reward', trainable=False)
      self._done = tf.Variable(
          True, dtype=tf.bool, name='done', trainable=False)
      self._step = tf.Variable(
          0, dtype=tf.int32, name='step', trainable=False) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:in_graph_env.py

示例11: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def simulate(self, action):
    """Step the batch of environments.

    The results of the step can be accessed from the variables defined below.

    Args:
      action: Tensor holding the batch of actions to apply.

    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = utils.parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      reward.set_shape((len(self),))
      done.set_shape((len(self),))
      with tf.control_dependencies([self._observ.assign(observ)]):
        return tf.identity(reward), tf.identity(done) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:py_func_batch_env.py

示例12: set_precision

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def set_precision(predictions, labels,
                  weights_fn=common_layers.weights_nonzero):
  """Precision of set predictions.

  Args:
    predictions : A Tensor of scores of shape [batch, nlabels].
    labels: A Tensor of int32s giving true set elements,
      of shape [batch, seq_length].
    weights_fn: A function to weight the elements.

  Returns:
    hits: A Tensor of shape [batch, nlabels].
    weights: A Tensor of shape [batch, nlabels].
  """
  with tf.variable_scope("set_precision", values=[predictions, labels]):
    labels = tf.squeeze(labels, [2, 3])
    weights = weights_fn(labels)
    labels = tf.one_hot(labels, predictions.shape[-1])
    labels = tf.reduce_max(labels, axis=1)
    labels = tf.cast(labels, tf.bool)
    return tf.to_float(tf.equal(labels, predictions)), weights 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics.py

示例13: pad_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def pad_batch(features, batch_multiple):
  """Pad batch dim of features to nearest multiple of batch_multiple."""
  feature = list(features.items())[0][1]
  batch_size = tf.shape(feature)[0]
  mod = batch_size % batch_multiple
  has_mod = tf.cast(tf.cast(mod, tf.bool), tf.int32)
  batch_padding = batch_multiple * has_mod - mod

  padded_features = {}
  for k, feature in features.items():
    rank = len(feature.shape)
    paddings = []
    for _ in range(rank):
      paddings.append([0, 0])
    paddings[0][1] = batch_padding
    padded_feature = tf.pad(feature, paddings)
    padded_features[k] = padded_feature
  return padded_features 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:problem.py

示例14: test_boolean_mask_with_field

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def test_boolean_mask_with_field(self):
    corners = tf.constant(
        [4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]])
    indicator = tf.constant([True, False, True, False, True], tf.bool)
    weights = tf.constant([[.1], [.3], [.5], [.7], [.9]], tf.float32)
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [[.1], [.5], [.9]]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.boolean_mask(boxes, indicator, ['weights'])
    with self.test_session() as sess:
      subset_output, weights_output = sess.run(
          [subset.get(), subset.get_field('weights')])
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights) 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:18,代碼來源:box_list_ops_test.py

示例15: _binary_focal_loss_from_probs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bool [as 別名]
def _binary_focal_loss_from_probs(labels, p, gamma, pos_weight, label_smoothing):
    q = 1 - p

    # For numerical stability (so we don't inadvertently take the log of 0)
    p = tf.math.maximum(p, _EPSILON)
    q = tf.math.maximum(q, _EPSILON)

    # Loss for the positive examples
    pos_loss = -(q**gamma) * tf.math.log(p)
    if pos_weight is not None:
        pos_loss *= pos_weight

    # Loss for the negative examples
    neg_loss = -(p**gamma) * tf.math.log(q)

    # Combine loss terms
    if label_smoothing is None:
        labels = tf.dtypes.cast(labels, dtype=tf.bool)
        loss = tf.where(labels, pos_loss, neg_loss)
    else:
        labels = _process_labels(labels=labels, label_smoothing=label_smoothing, dtype=p.dtype)
        loss = labels * pos_loss + (1 - labels) * neg_loss

    return loss 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:26,代碼來源:focal_loss.py


注:本文中的tensorflow.bool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。