當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.bitcast方法代碼示例

本文整理匯總了Python中tensorflow.bitcast方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.bitcast方法的具體用法?Python tensorflow.bitcast怎麽用?Python tensorflow.bitcast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.bitcast方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _quantize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def _quantize(x, params, randomize=True):
  """Quantize x according to params, optionally randomizing the rounding."""
  if not params.quantize:
    return x

  if not randomize:
    return tf.bitcast(
        tf.cast(x / params.quantization_scale, tf.int16), tf.float16)

  abs_x = tf.abs(x)
  sign_x = tf.sign(x)
  y = abs_x / params.quantization_scale
  y = tf.floor(y + tf.random_uniform(common_layers.shape_list(x)))
  y = tf.minimum(y, tf.int16.max) * sign_x
  q = tf.bitcast(tf.cast(y, tf.int16), tf.float16)
  return q 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:diet.py

示例2: decode_from_ternary_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def decode_from_ternary_gradients(grads_and_vars, scalers, shapes):
  """Decode each gradient tensor."""
  with tf.name_scope('ternary_decoder'):
    gradients, variables = zip(*grads_and_vars)
    floating_gradients = []
    for gradient, variable, scaler, shape in zip(gradients, variables, scalers, shapes):
      if gradient is None:
        floating_gradients.append(None)
      # gradient is encoded, so we use variable to check its size
      # We also assume dtype of variable and gradient is the same
      floating_gradient = tf.cond(tf.size(variable) < FLAGS.size_to_binarize,
                                 lambda: tf.bitcast(gradient, variable.dtype),
                                 lambda: ternary_decoder(gradient, scaler, shape))
      floating_gradients.append(floating_gradient)

    return list(zip(floating_gradients, variables)) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:18,代碼來源:bingrad_common.py

示例3: parse_a_line_b

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def parse_a_line_b(value, base_num, signal_num):
    vec = tf.decode_raw(value, tf.int8)

    bases = tf.cast(tf.reshape(tf.strided_slice(vec, [0], [base_num]), [base_num]), dtype=tf.int32)
    means = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num], [base_num + base_num * 4]), [base_num, 4]),
        type=tf.float32)
    stds = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 5], [base_num * 5 + base_num * 4]), [base_num, 4]),
        type=tf.float32)
    sanum = tf.cast(tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 9], [base_num * 9 + base_num * 2]), [base_num, 2]),
        type=tf.int16), dtype=tf.int32)
    signals = tf.bitcast(
        tf.reshape(tf.strided_slice(vec, [base_num * 11], [base_num * 11 + 4 * signal_num]),
                   [signal_num, 4]), type=tf.float32)
    labels = tf.cast(
        tf.reshape(tf.strided_slice(vec, [base_num * 11 + signal_num * 4], [base_num * 11 + signal_num * 4 + 1]),
                   [1]),
        dtype=tf.int32)

    return bases, means, stds, sanum, signals, labels 
開發者ID:bioinfomaticsCSU,項目名稱:deepsignal,代碼行數:24,代碼來源:tf_utils.py

示例4: lookup

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def lookup(self):
    """Returns cached_tree_ids, cached_node_ids, cached_logits."""
    cached_tree_ids, cached_node_ids, cached_logits = tf.split(
        lookup_ops.lookup_table_find_v2(
            self._table_ref,
            self._example_ids,
            default_value=[0.0, _DUMMY_NODE_ID, 0.0]),
        [1, 1, self._logits_dimension],
        axis=1)
    cached_tree_ids = tf.compat.v1.squeeze(
        tf.bitcast(cached_tree_ids, tf.dtypes.int32))
    cached_node_ids = tf.compat.v1.squeeze(
        tf.bitcast(cached_node_ids, tf.dtypes.int32))
    if self._example_ids.shape.ndims is not None:
      cached_logits.set_shape(
          [self._example_ids.shape[0], self._logits_dimension])
    return (cached_tree_ids, cached_node_ids, cached_logits) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:19,代碼來源:boosted_trees.py

示例5: _dequantize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def _dequantize(q, params):
  """Dequantize q according to params."""
  if not params.quantize:
    return q
  return tf.to_float(tf.bitcast(q, tf.int16)) * params.quantization_scale 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:7,代碼來源:diet.py

示例6: bottom

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def bottom(self, x):
    """Transform input from data space to model space.

    Args:
      x: A Tensor with shape [batch, ...]
    Returns:
      body_input: A Tensor with shape [batch, ?, ?, body_input_depth].
    """
    inputs = x
    with tf.variable_scope(self.name):
      # TODO(aidangomez): Will need to sort out a better audio pipeline
      def xnet_resblock(x, filters, res_relu, name):
        """Xception-like block."""
        with tf.variable_scope(name):
          # We only stride along the length dimension to preserve the spectral
          # bins (which are tiny in dimensionality relative to length)
          y = common_layers.separable_conv_block(
              x,
              filters, [((1, 1), (3, 3)), ((1, 1), (3, 3))],
              first_relu=True,
              padding="SAME",
              force2d=True,
              name="sep_conv_block")
          y = common_layers.pool(y, (3, 3), "MAX", "SAME", strides=(2, 1))
          return y + common_layers.conv_block(
              x,
              filters, [((1, 1), (1, 1))],
              padding="SAME",
              strides=(2, 1),
              first_relu=res_relu,
              force2d=True,
              name="res_conv0")

      # Bitcast back from int32
      x = tf.bitcast(inputs, tf.float32)
      x.set_shape([None, None, None, 1])
      for i in range(self._model_hparams.audio_compression):
        x = xnet_resblock(x, 2**(i + 1), True, "compress_block_%d" % i)
      return xnet_resblock(x, self._body_input_depth, False,
                           "compress_block_final") 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:42,代碼來源:modalities.py

示例7: map_flat_bits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def map_flat_bits(f, values):
    """Apply the function f to bit-concatenated values, then convert back to original shapes and dtypes."""
    values = [tf.convert_to_tensor(v) for v in values]
    def maybe_bitcast(v, dtype):
        cast = tf.cast if tf.bool in (v.dtype, dtype) else tf.bitcast
        return cast(v, dtype)
    bits = [maybe_bitcast(v, tf.uint8) for v in values]
    flat = tf.concat([tf.reshape(b, [-1]) for b in bits], axis=0)
    flat = f(flat)
    parts = tf.split(flat, [tf.size(b) for b in bits])
    return [maybe_bitcast(tf.reshape(p, tf.shape(b)), v.dtype)
            for p, v, b in zip(parts, values, bits)] 
開發者ID:openai,項目名稱:lm-human-preferences,代碼行數:14,代碼來源:core.py

示例8: _create_topk_unique

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def _create_topk_unique(inputs, k):
  """Creates the top k values in sorted order with indices.

  Args:
    inputs: A tensor with rank of 2. [batch_size, original_size].
    k: An integer, number of top elements to select.

  Returns:
    topk_r2: A tensor, the k largest elements. [batch_size, k].
    topk_indices_r2: A tensor, indices of the top k values. [batch_size, k].
  """
  height = inputs.shape[0]
  width = inputs.shape[1]
  neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
  ones = tf.ones([height, width], dtype=tf.float32)
  neg_inf_r2 = ones * neg_inf_r0
  inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)

  # Select the current largest value k times and keep them in topk_r2. The
  # selected largest values are marked as the smallest value to avoid being
  # selected again.
  tmp = inputs
  topk_r2 = tf.zeros([height, k], dtype=tf.float32)
  for i in range(k):
    kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
    k_mask = tf.tile(tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0),
                     [height, 1])
    topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2)
    ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width]))
    tmp = tf.where(ge_r2, neg_inf_r2, inputs)

  log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
  next_power_of_two = 1 << log2_ceiling
  count_mask = next_power_of_two - 1
  mask_r0 = tf.constant(count_mask)
  mask_r2 = tf.fill([height, k], mask_r0)
  topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
  topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
  return topk_r2, topk_indices_r2 
開發者ID:yyht,項目名稱:BERT,代碼行數:41,代碼來源:beam_search.py

示例9: create_topk_unique

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def create_topk_unique(inputs, k):
  height = inputs.shape[0]
  width = inputs.shape[1]
  neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
  ones = tf.ones([height, width], dtype=tf.float32)
  neg_inf_r2 = ones * neg_inf_r0
  inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)

  tmp = inputs
  topk_r2 = tf.zeros([height, k], dtype=tf.float32)
  for i in range(k):
    kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
    k_mask = tf.tile(tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0),
                     [height, 1])
    topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2)
    ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width]))
    tmp = tf.where(ge_r2, neg_inf_r2, inputs)

  log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
  next_power_of_two = 1 << log2_ceiling
  count_mask = next_power_of_two - 1
  mask_r0 = tf.constant(count_mask)
  mask_r2 = tf.fill([height, k], mask_r0)
  topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
  topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
  return topk_r2, topk_indices_r2 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:28,代碼來源:beam_search_decoder.py

示例10: _testBitcast

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def _testBitcast(self, x, datatype, shape):
    with self.test_session():
      tf_ans = tf.bitcast(x, datatype)
      out = tf_ans.eval()
      buff_after = memoryview(out).tobytes()
      buff_before = memoryview(x).tobytes()
      self.assertEqual(buff_before, buff_after)
      self.assertEqual(tf_ans.get_shape(), shape)
      self.assertEqual(tf_ans.dtype, datatype) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:bitcast_op_test.py

示例11: testErrors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def testErrors(self):
    x = np.zeros([1, 1], np.int8)
    datatype = tf.int32
    with self.assertRaisesRegexp(ValueError, "Cannot bitcast due to shape"):
      tf.bitcast(x, datatype, None) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:bitcast_op_test.py

示例12: testUnknown

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def testUnknown(self):
    x = tf.placeholder(tf.float32)
    datatype = tf.int8
    tf.bitcast(x, datatype, None) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:6,代碼來源:bitcast_op_test.py

示例13: encode_to_ternary_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def encode_to_ternary_gradients(grads_and_vars, get_shape=False):
  """Encode each gradient tensor."""
  with tf.name_scope('ternary_encoder'):
    gradients, variables = zip(*grads_and_vars)
    ternary_gradients = []
    gradient_shapes = []
    for gradient in gradients:
      if gradient is None:
        ternary_gradients.append(None)
        if get_shape:
          gradient_shapes.append(None)
        continue

      if get_shape:
        if isinstance(gradient, tf.IndexedSlices):
          gradient_shape = gradient.dense_shape
        else:
          gradient_shape = gradient.get_shape()
        gradient_shapes.append(gradient_shape)

      ternary_gradient = tf.cond(tf.size(gradient) < FLAGS.size_to_binarize,
                                 lambda: tf.bitcast(gradient, type=tf.uint8),
                                 lambda: ternary_encoder(gradient))
      ternary_gradients.append(ternary_gradient)

    if get_shape:
      return list(zip(ternary_gradients, variables)), gradient_shapes
    else:
      return list(zip(ternary_gradients, variables)) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:31,代碼來源:bingrad_common.py

示例14: create_make_unique

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def create_make_unique(inputs):
  """Replaces the lower bits of each element with iota."""
  if inputs.shape.ndims != 2:
    raise ValueError("Input of top_k_with_unique must be rank-2 "
                     "but got: %s" % inputs.shape)

  height = inputs.shape[0]
  width = inputs.shape[1]
  zeros = tf.zeros([height, width], dtype=tf.int32)

  log2_ceiling = int(math.ceil(math.log(int(width), 2)))
  next_power_of_two = 1 << log2_ceiling
  count_mask = ~(next_power_of_two - 1)
  count_mask_r0 = tf.constant(count_mask)
  count_mask_r2 = tf.fill([height, width], count_mask_r0)

  smallest_normal = 1 << 23
  smallest_normal_r0 = tf.constant(smallest_normal, dtype=tf.int32)
  smallest_normal_r2 = tf.fill([height, width], smallest_normal_r0)

  low_bit_mask = ~(1 << 31)
  low_bit_mask_r0 = tf.constant(low_bit_mask, dtype=tf.int32)
  low_bit_mask_r2 = tf.fill([height, width], low_bit_mask_r0)

  iota = tf.tile(
      tf.expand_dims(tf.range(width, dtype=tf.int32), 0), [height, 1])

  input_r2 = tf.bitcast(inputs, tf.int32)
  abs_r2 = tf.bitwise.bitwise_and(input_r2, low_bit_mask_r2)
  if_zero_r2 = tf.equal(abs_r2, zeros)
  smallest_normal_preserving_sign_r2 = tf.bitwise.bitwise_or(
      input_r2, smallest_normal_r2)
  input_no_zeros_r2 = tf.where(if_zero_r2, smallest_normal_preserving_sign_r2,
                               input_r2)

  and_r2 = tf.bitwise.bitwise_and(input_no_zeros_r2, count_mask_r2)
  or_r2 = tf.bitwise.bitwise_or(and_r2, iota)
  return tf.bitcast(or_r2, tf.float32) 
開發者ID:didi,項目名稱:delta,代碼行數:40,代碼來源:utils_tf.py

示例15: create_topk_unique

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import bitcast [as 別名]
def create_topk_unique(inputs, k):
  """Creates the top k values in sorted order with indices."""
  height = inputs.shape[0]
  width = inputs.shape[1]
  neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32)
  ones = tf.ones([height, width], dtype=tf.float32)
  neg_inf_r2 = ones * neg_inf_r0
  inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs)

  tmp = inputs
  topk_r2 = tf.zeros([height, k], dtype=tf.float32)
  for i in range(k):
    kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True)
    k_mask = tf.tile(
        tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0), [height, 1])
    topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2)
    ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width]))
    tmp = tf.where(ge_r2, neg_inf_r2, inputs)

  log2_ceiling = int(math.ceil(math.log(float(int(width)), 2)))
  next_power_of_two = 1 << log2_ceiling
  count_mask = next_power_of_two - 1
  mask_r0 = tf.constant(count_mask)
  mask_r2 = tf.fill([height, k], mask_r0)
  topk_r2_s32 = tf.bitcast(topk_r2, tf.int32)
  topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2)
  return topk_r2, topk_indices_r2 
開發者ID:didi,項目名稱:delta,代碼行數:29,代碼來源:utils_tf.py


注:本文中的tensorflow.bitcast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。