本文整理匯總了Python中tensorflow.batch_to_space_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.batch_to_space_nd方法的具體用法?Python tensorflow.batch_to_space_nd怎麽用?Python tensorflow.batch_to_space_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.batch_to_space_nd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _checkGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _checkGrad(self, x, block_shape, crops):
block_shape = np.array(block_shape)
crops = np.array(crops).reshape((len(block_shape), 2))
with self.test_session():
tf_x = tf.convert_to_tensor(x)
tf_y = tf.batch_to_space_nd(tf_x, block_shape, crops)
epsilon = 1e-5
((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
tf_x,
x.shape,
tf_y,
tf_y.get_shape().as_list(),
x_init_value=x,
delta=epsilon)
self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
示例2: SubPixel1D_multichan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def SubPixel1D_multichan(I, r):
"""One-dimensional subpixel upsampling layer
Calls a tensorflow function that directly implements this functionality.
We assume input has dim (batch, width, r).
Works with multiple channels: (B,L,rC) -> (B,rL,C)
"""
with tf.name_scope('subpixel'):
_, w, rc = I.get_shape()
assert rc % r == 0
c = rc / r
X = tf.transpose(I, [2,1,0]) # (rc, w, b)
X = tf.batch_to_space_nd(X, [r], [[0,0]]) # (c, r*w, b)
X = tf.transpose(X, [2,1,0])
return X
# ----------------------------------------------------------------------------
# demonstration
示例3: _testStaticShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testStaticShape(self, input_shape, block_shape, paddings, error):
block_shape = np.array(block_shape)
paddings = np.array(paddings)
# Try with sizes known at graph construction time.
with self.assertRaises(error):
_ = tf.batch_to_space_nd(
np.zeros(input_shape, np.float32), block_shape, paddings)
示例4: _testDynamicShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testDynamicShape(self, input_shape, block_shape, paddings):
block_shape = np.array(block_shape)
paddings = np.array(paddings)
# Try with sizes unknown at graph construction time.
input_placeholder = tf.placeholder(tf.float32)
block_shape_placeholder = tf.placeholder(tf.int32, shape=block_shape.shape)
paddings_placeholder = tf.placeholder(tf.int32)
t = tf.batch_to_space_nd(input_placeholder, block_shape_placeholder,
paddings_placeholder)
with self.assertRaises(ValueError):
_ = t.eval({input_placeholder: np.zeros(input_shape, np.float32),
block_shape_placeholder: block_shape,
paddings_placeholder: paddings})
示例5: testUnknownShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def testUnknownShape(self):
# Verify that input shape and paddings shape can be unknown.
_ = tf.batch_to_space_nd(
tf.placeholder(tf.float32),
tf.placeholder(tf.int32, shape=(2,)),
tf.placeholder(tf.int32))
# Only number of input dimensions is known.
t = tf.batch_to_space_nd(
tf.placeholder(tf.float32, shape=(None, None, None, None)),
tf.placeholder(tf.int32, shape=(2,)),
tf.placeholder(tf.int32))
self.assertEqual(4, t.get_shape().ndims)
# Dimensions are partially known.
t = tf.batch_to_space_nd(
tf.placeholder(tf.float32, shape=(None, None, None, 2)),
tf.placeholder(tf.int32, shape=(2,)),
tf.placeholder(tf.int32))
self.assertEqual([None, None, None, 2], t.get_shape().as_list())
# Dimensions are partially known.
t = tf.batch_to_space_nd(
tf.placeholder(tf.float32, shape=(3 * 2 * 3, None, None, 2)), [2, 3],
tf.placeholder(tf.int32))
self.assertEqual([3, None, None, 2], t.get_shape().as_list())
# Dimensions are partially known.
t = tf.batch_to_space_nd(
tf.placeholder(tf.float32, shape=(3 * 2 * 3, None, 2, 2)), [2, 3],
[[1, 1], [0, 1]])
self.assertEqual([3, None, 5, 2], t.get_shape().as_list())
# Dimensions are fully known.
t = tf.batch_to_space_nd(
tf.placeholder(tf.float32, shape=(3 * 2 * 3, 2, 1, 2)), [2, 3],
[[1, 1], [0, 0]])
self.assertEqual([3, 2, 3, 2], t.get_shape().as_list())
示例6: _testPad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testPad(self, inputs, block_shape, paddings, outputs):
block_shape = np.array(block_shape)
paddings = np.array(paddings).reshape((len(block_shape), 2))
for use_gpu in [False, True]:
with self.test_session(use_gpu=use_gpu):
# outputs = space_to_batch(inputs)
x_tf = tf.space_to_batch_nd(tf.to_float(inputs), block_shape, paddings)
self.assertAllEqual(x_tf.eval(), outputs)
# inputs = batch_to_space(outputs)
x_tf = tf.batch_to_space_nd(tf.to_float(outputs), block_shape, paddings)
self.assertAllEqual(x_tf.eval(), inputs)
示例7: _generic_public_test
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_public_test(t, block_shape, crops):
with tf.Session() as sess:
out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
actual = sess.run(out)
with tfe.protocol.Pond() as prot:
b = prot.define_public_variable(t)
out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
with tfe.Session() as sess:
sess.run(tf.global_variables_initializer())
final = sess.run(out)
np.testing.assert_array_almost_equal(final, actual, decimal=3)
示例8: _generic_private_test
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_private_test(t, block_shape, crops):
with tf.Session() as sess:
out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
actual = sess.run(out)
with tfe.protocol.Pond() as prot:
b = prot.define_private_variable(t)
out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
with tfe.Session() as sess:
sess.run(tf.global_variables_initializer())
final = sess.run(out.reveal())
np.testing.assert_array_almost_equal(final, actual, decimal=3)
示例9: _generic_masked_test
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_masked_test(t, block_shape, crops):
with tf.Session() as sess:
out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
actual = sess.run(out)
with tfe.protocol.Pond() as prot:
b = prot.mask(prot.define_private_variable(t))
out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
with tfe.Session() as sess:
sess.run(tf.global_variables_initializer())
final = sess.run(out.reveal())
np.testing.assert_array_almost_equal(final, actual, decimal=3)
示例10: test_batch_to_space_nd_convert
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def test_batch_to_space_nd_convert(self):
test_input = np.ones([8, 1, 3, 1])
self._test_with_ndarray_input_fn(
"batch_to_space_nd", test_input, protocol="Pond"
)
示例11: _construct_batch_to_space_nd
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _construct_batch_to_space_nd(input_shape):
a = tf.placeholder(tf.float32, shape=input_shape, name="input")
block_shape = tf.constant([2, 2], dtype=tf.int32)
crops = tf.constant([[0, 0], [2, 0]], dtype=tf.int32)
x = tf.batch_to_space_nd(a, block_shape=block_shape, crops=crops)
return x, a
示例12: _phase_shift
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _phase_shift(self, inputs, batch_size, H, W, r1, r2):
#Do a periodic shuffle on each output channel separately
x = tf.reshape(inputs, [batch_size, H, W, r1, r2]) #[batch_size, H, W, r1, r2]
#Width dim shuffle
x = tf.transpose(x, [4, 2, 3, 1, 0]) #[r2, W, r1, H, batch_size]
x = tf.batch_to_space_nd(x, [r2], [[0, 0]]) #[1, r2*W, r1, H, batch_size]
x = tf.squeeze(x, [0]) #[r2*W, r1, H, batch_size]
#Height dim shuffle
x = tf.transpose(x, [1, 2, 0, 3]) #[r1, H, r2*W, batch_size]
x = tf.batch_to_space_nd(x, [r1], [[0, 0]]) #[1, r1*H, r2*W, batch_size]
x = tf.transpose(x, [3, 1, 2, 0]) #[batch_size, r1*H, r2*W, 1]
return x
示例13: SubPixel1D
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def SubPixel1D(I, r):
"""One-dimensional subpixel upsampling layer
Calls a tensorflow function that directly implements this functionality.
We assume input has dim (batch, width, r)
"""
with tf.name_scope('subpixel'):
X = tf.transpose(I, [2,1,0]) # (r, w, b)
X = tf.batch_to_space_nd(X, [r], [[0,0]]) # (1, r*w, b)
X = tf.transpose(X, [2,1,0])
return X
示例14: imageSummaryMeanVar
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def imageSummaryMeanVar(opt,image,tag,H,W):
imageOne = tf.batch_to_space_nd(image,crops=[[0,0],[0,0]],block_shape=[1,10])
imagePermute = tf.reshape(imageOne,[H,1,W,10,-1])
imageTransp = tf.transpose(imagePermute,[1,0,3,2,4])
imageBlocks = tf.reshape(imageTransp,[1,H*1,W*10,-1])
imageBlocks = tf.cast(imageBlocks*255,tf.uint8)
summary = tf.summary.image(tag,imageBlocks)
return summary
# set optimizer for different learning rates
示例15: imageSummaryMeanVar
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def imageSummaryMeanVar(opt,image,tag,H,W):
image = tf.concat([image,np.zeros([2,H,W,3])],axis=0)
imageOne = tf.batch_to_space_nd(image,crops=[[0,0],[0,0]],block_shape=[5,9])
imagePermute = tf.reshape(imageOne,[H,5,W,9,-1])
imageTransp = tf.transpose(imagePermute,[1,0,3,2,4])
imageBlocks = tf.reshape(imageTransp,[1,H*5,W*9,-1])
# imageBlocks = tf.cast(imageBlocks*255,tf.uint8)
summary = tf.summary.image(tag,imageBlocks)
return summary
# set optimizer for different learning rates