當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.batch_to_space_nd方法代碼示例

本文整理匯總了Python中tensorflow.batch_to_space_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.batch_to_space_nd方法的具體用法?Python tensorflow.batch_to_space_nd怎麽用?Python tensorflow.batch_to_space_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.batch_to_space_nd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _checkGrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _checkGrad(self, x, block_shape, crops):
    block_shape = np.array(block_shape)
    crops = np.array(crops).reshape((len(block_shape), 2))
    with self.test_session():
      tf_x = tf.convert_to_tensor(x)
      tf_y = tf.batch_to_space_nd(tf_x, block_shape, crops)
      epsilon = 1e-5
      ((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:batchtospace_op_test.py

示例2: SubPixel1D_multichan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def SubPixel1D_multichan(I, r):
  """One-dimensional subpixel upsampling layer

  Calls a tensorflow function that directly implements this functionality.
  We assume input has dim (batch, width, r).

  Works with multiple channels: (B,L,rC) -> (B,rL,C)
  """
  with tf.name_scope('subpixel'):
    _, w, rc = I.get_shape()
    assert rc % r == 0
    c = rc / r
    X = tf.transpose(I, [2,1,0]) # (rc, w, b)
    X = tf.batch_to_space_nd(X, [r], [[0,0]]) # (c, r*w, b)
    X = tf.transpose(X, [2,1,0])
    return X      

# ----------------------------------------------------------------------------

# demonstration 
開發者ID:kuleshov,項目名稱:audio-super-res,代碼行數:22,代碼來源:subpixel.py

示例3: _testStaticShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testStaticShape(self, input_shape, block_shape, paddings, error):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings)

    # Try with sizes known at graph construction time.
    with self.assertRaises(error):
      _ = tf.batch_to_space_nd(
          np.zeros(input_shape, np.float32), block_shape, paddings) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:batchtospace_op_test.py

示例4: _testDynamicShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testDynamicShape(self, input_shape, block_shape, paddings):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings)

    # Try with sizes unknown at graph construction time.
    input_placeholder = tf.placeholder(tf.float32)
    block_shape_placeholder = tf.placeholder(tf.int32, shape=block_shape.shape)
    paddings_placeholder = tf.placeholder(tf.int32)
    t = tf.batch_to_space_nd(input_placeholder, block_shape_placeholder,
                             paddings_placeholder)

    with self.assertRaises(ValueError):
      _ = t.eval({input_placeholder: np.zeros(input_shape, np.float32),
                  block_shape_placeholder: block_shape,
                  paddings_placeholder: paddings}) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:batchtospace_op_test.py

示例5: testUnknownShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def testUnknownShape(self):
    # Verify that input shape and paddings shape can be unknown.
    _ = tf.batch_to_space_nd(
        tf.placeholder(tf.float32),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))

    # Only number of input dimensions is known.
    t = tf.batch_to_space_nd(
        tf.placeholder(tf.float32, shape=(None, None, None, None)),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))
    self.assertEqual(4, t.get_shape().ndims)

    # Dimensions are partially known.
    t = tf.batch_to_space_nd(
        tf.placeholder(tf.float32, shape=(None, None, None, 2)),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))
    self.assertEqual([None, None, None, 2], t.get_shape().as_list())

    # Dimensions are partially known.
    t = tf.batch_to_space_nd(
        tf.placeholder(tf.float32, shape=(3 * 2 * 3, None, None, 2)), [2, 3],
        tf.placeholder(tf.int32))
    self.assertEqual([3, None, None, 2], t.get_shape().as_list())

    # Dimensions are partially known.
    t = tf.batch_to_space_nd(
        tf.placeholder(tf.float32, shape=(3 * 2 * 3, None, 2, 2)), [2, 3],
        [[1, 1], [0, 1]])
    self.assertEqual([3, None, 5, 2], t.get_shape().as_list())

    # Dimensions are fully known.
    t = tf.batch_to_space_nd(
        tf.placeholder(tf.float32, shape=(3 * 2 * 3, 2, 1, 2)), [2, 3],
        [[1, 1], [0, 0]])
    self.assertEqual([3, 2, 3, 2], t.get_shape().as_list()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:batchtospace_op_test.py

示例6: _testPad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _testPad(self, inputs, block_shape, paddings, outputs):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings).reshape((len(block_shape), 2))
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        # outputs = space_to_batch(inputs)
        x_tf = tf.space_to_batch_nd(tf.to_float(inputs), block_shape, paddings)
        self.assertAllEqual(x_tf.eval(), outputs)
        # inputs = batch_to_space(outputs)
        x_tf = tf.batch_to_space_nd(tf.to_float(outputs), block_shape, paddings)
        self.assertAllEqual(x_tf.eval(), inputs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:spacetobatch_op_test.py

示例7: _generic_public_test

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_public_test(t, block_shape, crops):
        with tf.Session() as sess:
            out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.define_public_variable(t)
            out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out)

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:15,代碼來源:ops_test.py

示例8: _generic_private_test

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_private_test(t, block_shape, crops):
        with tf.Session() as sess:
            out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.define_private_variable(t)
            out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out.reveal())

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:15,代碼來源:ops_test.py

示例9: _generic_masked_test

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _generic_masked_test(t, block_shape, crops):
        with tf.Session() as sess:
            out = tf.batch_to_space_nd(t, block_shape=block_shape, crops=crops)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.mask(prot.define_private_variable(t))
            out = prot.batch_to_space_nd(b, block_shape=block_shape, crops=crops)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out.reveal())

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:15,代碼來源:ops_test.py

示例10: test_batch_to_space_nd_convert

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def test_batch_to_space_nd_convert(self):
        test_input = np.ones([8, 1, 3, 1])
        self._test_with_ndarray_input_fn(
            "batch_to_space_nd", test_input, protocol="Pond"
        ) 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:7,代碼來源:convert_test.py

示例11: _construct_batch_to_space_nd

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _construct_batch_to_space_nd(input_shape):
    a = tf.placeholder(tf.float32, shape=input_shape, name="input")
    block_shape = tf.constant([2, 2], dtype=tf.int32)
    crops = tf.constant([[0, 0], [2, 0]], dtype=tf.int32)
    x = tf.batch_to_space_nd(a, block_shape=block_shape, crops=crops)
    return x, a 
開發者ID:tf-encrypted,項目名稱:tf-encrypted,代碼行數:8,代碼來源:convert_test.py

示例12: _phase_shift

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def _phase_shift(self, inputs, batch_size, H, W, r1, r2):
		#Do a periodic shuffle on each output channel separately
		x = tf.reshape(inputs, [batch_size, H, W, r1, r2]) #[batch_size, H, W, r1, r2]

		#Width dim shuffle
		x = tf.transpose(x, [4, 2, 3, 1, 0]) #[r2, W, r1, H, batch_size]
		x = tf.batch_to_space_nd(x, [r2], [[0, 0]]) #[1, r2*W, r1, H, batch_size]
		x = tf.squeeze(x, [0]) #[r2*W, r1, H, batch_size]

		#Height dim shuffle
		x = tf.transpose(x, [1, 2, 0, 3]) #[r1, H, r2*W, batch_size]
		x = tf.batch_to_space_nd(x, [r1], [[0, 0]]) #[1, r1*H, r2*W, batch_size]
		x = tf.transpose(x, [3, 1, 2, 0]) #[batch_size, r1*H, r2*W, 1]

		return x 
開發者ID:Rayhane-mamah,項目名稱:Tacotron-2,代碼行數:17,代碼來源:modules.py

示例13: SubPixel1D

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def SubPixel1D(I, r):
  """One-dimensional subpixel upsampling layer

  Calls a tensorflow function that directly implements this functionality.
  We assume input has dim (batch, width, r)
  """
  with tf.name_scope('subpixel'):
    X = tf.transpose(I, [2,1,0]) # (r, w, b)
    X = tf.batch_to_space_nd(X, [r], [[0,0]]) # (1, r*w, b)
    X = tf.transpose(X, [2,1,0])
    return X 
開發者ID:kuleshov,項目名稱:audio-super-res,代碼行數:13,代碼來源:subpixel.py

示例14: imageSummaryMeanVar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def imageSummaryMeanVar(opt,image,tag,H,W):
	imageOne = tf.batch_to_space_nd(image,crops=[[0,0],[0,0]],block_shape=[1,10])
	imagePermute = tf.reshape(imageOne,[H,1,W,10,-1])
	imageTransp = tf.transpose(imagePermute,[1,0,3,2,4])
	imageBlocks = tf.reshape(imageTransp,[1,H*1,W*10,-1])
	imageBlocks = tf.cast(imageBlocks*255,tf.uint8)
	summary = tf.summary.image(tag,imageBlocks)
	return summary

# set optimizer for different learning rates 
開發者ID:chenhsuanlin,項目名稱:inverse-compositional-STN,代碼行數:12,代碼來源:util.py

示例15: imageSummaryMeanVar

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space_nd [as 別名]
def imageSummaryMeanVar(opt,image,tag,H,W):
	image = tf.concat([image,np.zeros([2,H,W,3])],axis=0)
	imageOne = tf.batch_to_space_nd(image,crops=[[0,0],[0,0]],block_shape=[5,9])
	imagePermute = tf.reshape(imageOne,[H,5,W,9,-1])
	imageTransp = tf.transpose(imagePermute,[1,0,3,2,4])
	imageBlocks = tf.reshape(imageTransp,[1,H*5,W*9,-1])
	# imageBlocks = tf.cast(imageBlocks*255,tf.uint8)
	summary = tf.summary.image(tag,imageBlocks)
	return summary

# set optimizer for different learning rates 
開發者ID:chenhsuanlin,項目名稱:inverse-compositional-STN,代碼行數:13,代碼來源:util.py


注:本文中的tensorflow.batch_to_space_nd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。