當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.batch_to_space方法代碼示例

本文整理匯總了Python中tensorflow.batch_to_space方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.batch_to_space方法的具體用法?Python tensorflow.batch_to_space怎麽用?Python tensorflow.batch_to_space使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.batch_to_space方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _checkGrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def _checkGrad(self, x, crops, block_size):
    assert 4 == x.ndim
    with self.test_session():
      tf_x = tf.convert_to_tensor(x)
      tf_y = self.batch_to_space(tf_x, crops, block_size)
      epsilon = 1e-5
      ((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)

  # Tests a gradient for batch_to_space of x which is a four dimensional
  # tensor of shape [b * block_size * block_size, h, w, d]. 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:batchtospace_op_test.py

示例2: upscale

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def upscale(images, scale):
  """Box upscaling (also called nearest neighbors) of images.

  Args:
    images: A 4D `Tensor` in NHWC format.
    scale: A positive integer scale.

  Returns:
    A 4D `Tensor` of `images` up scaled by a factor `scale`.

  Raises:
    ValueError: If `scale` is not a positive integer.
  """
  scale = _get_validated_scale(scale)
  if scale == 1:
    return images
  return tf.batch_to_space(
      tf.tile(images, [scale**2, 1, 1, 1]),
      crops=[[0, 0], [0, 0]],
      block_size=scale) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:22,代碼來源:layers.py

示例3: imageRearrange

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def imageRearrange(self, image, block=4):
        image = tf.slice(image, [0, 0, 0, 0], [block * block, -1, -1, -1])
        x1 = tf.batch_to_space(image, [[0, 0], [0, 0]], block)
        image_r = tf.reshape(tf.transpose(tf.reshape(x1,
            [self.output_size, block, self.output_size, block, self.c_dim])
            , [1, 0, 3, 2, 4]),
            [1, self.output_size * block, self.output_size * block, self.c_dim])
        return image_r 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:10,代碼來源:model_mmd.py

示例4: conv_layers_2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def conv_layers_2(x, bs, max_seq_len, im_dim):
    #x = tf.cast(x, tf.float32)
    wid, hei, chan = im_dim[0], im_dim[1], im_dim[2]
    try:
        x = tf.reshape(x, [bs * max_seq_len, wid, hei, chan])
    except:
        print('image dimensions not compatible')
        raise
    rate = 3
    rem_wid, rem_hei = rate * 2 - (wid % (rate * 2)) , rate * 2 - (hei % (rate * 2))
    pad = tf.constant([[np.floor(rem_hei / 2), np.ceil(rem_hei / 2)], [np.floor(rem_wid / 2), np.ceil(rem_wid / 2)]])
    pad = tf.cast(pad, tf.int32)
    filters1 = tf.Variable(tf.random_normal([3,3,3,5]), dtype=tf.float32)
    filters2 = tf.Variable(tf.random_normal([3,3,5,5]), dtype=tf.float32)
    filters3 = tf.Variable(tf.random_normal([3,3,5,5]), dtype=tf.float32)
    net = space_to_batch(x,paddings=pad,block_size=rate)
    net = tf.nn.conv2d(net, filters1, strides=[1, 1, 1, 1], padding="SAME", name="dil_conv_1")
    # print "dil_conv_1"
    # print net.get_shape()
    # net = tf.nn.conv2d(net, filters2, strides=[1, 1, 1, 1], padding="SAME", name="dil_conv_2")
    # print "dil_conv_2"
    # print net.get_shape()
    net = tf.nn.conv2d(net, filters3, strides=[1, 1, 1, 1], padding="SAME", name="dil_conv_3")
    # print "dil_conv_3"
    # print net.get_shape()
    net = batch_to_space(net, crops=pad, block_size=rate)
    # print "final_output"
    # print net.get_shape()
    output = tf.layers.flatten(net)
    # print "output"
    # print output.get_shape()
    return output 
開發者ID:KyriacosShiarli,項目名稱:taco,代碼行數:34,代碼來源:image_models.py

示例5: imageSummary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def imageSummary(opt,tag,image,H,W):
	blockSize = opt.visBlockSize
	imageOne = tf.batch_to_space(image[:blockSize**2],crops=[[0,0],[0,0]],block_size=blockSize)
	imagePermute = tf.reshape(imageOne,[H,blockSize,W,blockSize,-1])
	imageTransp = tf.transpose(imagePermute,[1,0,3,2,4])
	imageBlocks = tf.reshape(imageTransp,[1,H*blockSize,W*blockSize,-1])
	summary = tf.summary.image(tag,imageBlocks)
	return summary

# restore model 
開發者ID:chenhsuanlin,項目名稱:3D-point-cloud-generation,代碼行數:12,代碼來源:util.py

示例6: batch_to_space

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def batch_to_space(*args, **kwargs):
    """Call tf.batch_to_space using the correct arguments."""
    try:
        return tf.batch_to_space(*args, **kwargs)
    except TypeError:
        if "block_shape" in kwargs:
            kwargs["block_size"] = kwargs["block_shape"]
            del kwargs["block_shape"]
        return tf.batch_to_space(*args, **kwargs) 
開發者ID:zurutech,項目名稱:ashpy,代碼行數:11,代碼來源:sliced_wasserstein.py

示例7: batch_to_space

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def batch_to_space(*args, **kwargs):
    return tf.batch_to_space(*args, **kwargs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:batchtospace_op_test.py

示例8: testDepthToSpaceTranspose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testDepthToSpaceTranspose(self):
    x = np.arange(20 * 5 * 8 * 7, dtype=np.float32).reshape([20, 5, 8, 7])
    block_size = 2
    crops = np.zeros((2, 2), dtype=np.int32)
    y1 = self.batch_to_space(x, crops, block_size=block_size)
    y2 = tf.transpose(
        tf.depth_to_space(
            tf.transpose(x, [3, 1, 2, 0]),
            block_size=block_size), [3, 1, 2, 0])
    with self.test_session():
      self.assertAllEqual(y1.eval(), y2.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:13,代碼來源:batchtospace_op_test.py

示例9: testInputWrongDimMissingBatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testInputWrongDimMissingBatch(self):
    # The input is missing the first dimension ("batch")
    x_np = [[[1], [2]], [[3], [4]]]
    crops = np.zeros((2, 2), dtype=np.int32)
    block_size = 2
    with self.assertRaises(ValueError):
      _ = self.batch_to_space(x_np, crops, block_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:batchtospace_op_test.py

示例10: testBlockSizeOne

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testBlockSizeOne(self):
    # The block size is 1. The block size needs to be > 1.
    x_np = [[[[1], [2]], [[3], [4]]]]
    crops = np.zeros((2, 2), dtype=np.int32)
    block_size = 1
    with self.assertRaises(ValueError):
      out_tf = self.batch_to_space(x_np, crops, block_size)
      out_tf.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:batchtospace_op_test.py

示例11: testBlockSizeLarger

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testBlockSizeLarger(self):
    # The block size is too large for this input.
    x_np = [[[[1], [2]], [[3], [4]]]]
    crops = np.zeros((2, 2), dtype=np.int32)
    block_size = 10
    with self.assertRaises(ValueError):
      out_tf = self.batch_to_space(x_np, crops, block_size)
      out_tf.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:batchtospace_op_test.py

示例12: testBlockSizeSquaredNotDivisibleBatch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testBlockSizeSquaredNotDivisibleBatch(self):
    # The block size squared does not divide the batch.
    x_np = [[[[1], [2], [3]], [[3], [4], [7]]]]
    crops = np.zeros((2, 2), dtype=np.int32)
    block_size = 3
    with self.assertRaises(ValueError):
      _ = self.batch_to_space(x_np, crops, block_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:batchtospace_op_test.py

示例13: testUnknownShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def testUnknownShape(self):
    t = self.batch_to_space(
        tf.placeholder(tf.float32),
        tf.placeholder(tf.int32),
        block_size=4)
    self.assertEqual(4, t.get_shape().ndims) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:batchtospace_op_test.py

示例14: batch_to_space

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def batch_to_space(*args, **kwargs):
    return gen_array_ops._batch_to_space(*args, **kwargs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:spacetobatch_op_test.py

示例15: _testPad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_to_space [as 別名]
def _testPad(self, inputs, paddings, block_size, outputs):
    with self.test_session(use_gpu=True):
      # outputs = space_to_batch(inputs)
      x_tf = self.space_to_batch(
          tf.to_float(inputs),
          paddings, block_size=block_size)
      self.assertAllEqual(x_tf.eval(), outputs)
      # inputs = batch_to_space(outputs)
      x_tf = self.batch_to_space(
          tf.to_float(outputs),
          paddings, block_size=block_size)
      self.assertAllEqual(x_tf.eval(), inputs) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:spacetobatch_op_test.py


注:本文中的tensorflow.batch_to_space方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。