當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.batch_matmul方法代碼示例

本文整理匯總了Python中tensorflow.batch_matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.batch_matmul方法的具體用法?Python tensorflow.batch_matmul怎麽用?Python tensorflow.batch_matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.batch_matmul方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transition

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def transition(h,share=None):
  # compute A,B,o linearization matrices
  with tf.variable_scope("trans",reuse=share):
    for l in range(2):
      h=ReLU(h,100,"l"+str(l))
    with tf.variable_scope("A"):
      v,r=tf.split(1,2,linear(h,z_dim*2))
      v1=tf.expand_dims(v,-1) # (batch, z_dim, 1)
      rT=tf.expand_dims(r,1) # batch, 1, z_dim
      I=tf.diag([1.]*z_dim)
      A=(I+tf.batch_matmul(v1,rT)) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted) 
    with tf.variable_scope("B"):
      B=linear(h,z_dim*u_dim)
      B=tf.reshape(B,[-1,z_dim,u_dim])
    with tf.variable_scope("o"):
      o=linear(h,z_dim)
    return A,B,o,v,r 
開發者ID:ericjang,項目名稱:e2c,代碼行數:19,代碼來源:e2c_seq.py

示例2: transition

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def transition(h):
  # compute A,B,o linearization matrices
  with tf.variable_scope("trans"):
    for l in range(2):
      h=ReLU(h,100,"l"+str(l))
    with tf.variable_scope("A"):
      v,r=tf.split(1,2,linear(h,z_dim*2))
      v1=tf.expand_dims(v,-1) # (batch, z_dim, 1)
      rT=tf.expand_dims(r,1) # batch, 1, z_dim
      I=tf.diag([1.]*z_dim)
      A=(I+tf.batch_matmul(v1,rT)) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted) 
    with tf.variable_scope("B"):
      B=linear(h,z_dim*u_dim)
      B=tf.reshape(B,[-1,z_dim,u_dim])
    with tf.variable_scope("o"):
      o=linear(h,z_dim)
    return A,B,o,v,r 
開發者ID:ericjang,項目名稱:e2c,代碼行數:19,代碼來源:e2c_plane.py

示例3: gesd_similarity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def gesd_similarity(a, b):
    a = tf.nn.l2_normalize(a, dim=1)
    b = tf.nn.l2_normalize(b, dim=1)
    euclidean = tf.sqrt(tf.reduce_sum((a - b) ** 2, 1))
    mm = tf.reshape(
        tf.batch_matmul(
            tf.reshape(a, [-1, 1, tf.shape(a)[1]]),
            tf.transpose(
                tf.reshape(b, [-1, 1, tf.shape(a)[1]]),
                [0, 2, 1]
            )
        ),
        [-1]
    )
    sigmoid_dot = tf.exp(-1 * (mm + 1))
    return 1.0 / (1.0 + euclidean) * 1.0 / (1.0 + sigmoid_dot) 
開發者ID:UKPLab,項目名稱:iwcs2017-answer-selection,代碼行數:18,代碼來源:__init__.py

示例4: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def __call__(self, input_data):
        batch_size = input_data.get_shape()[0].value
        num_steps = input_data.get_shape()[1].value

        memory_matrix = []
        for step in range(num_steps):
            left_num = tf.maximum(0, step + 1 - self._memory_size)
            right_num = num_steps - step - 1
            mem = self._memory_weights[tf.minimum(step, self._memory_size)::-1]
            d_batch = tf.pad(mem, [[left_num, right_num]])
            memory_matrix.append([d_batch])
        memory_matrix = tf.concat(0, memory_matrix)

        h_hatt = tf.batch_matmul([memory_matrix] * batch_size, input_data)
        h = tf.batch_matmul(input_data, [self._W1] * batch_size)
        h += tf.batch_matmul(h_hatt, [self._W2] * batch_size) + self._bias
        return h 
開發者ID:katsugeneration,項目名稱:tensor-fsmn,代碼行數:19,代碼來源:fsmn.py

示例5: channel_wise_fc_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def channel_wise_fc_layer(bottom, name, bias=True):
    """
    channel-wise fully connected layer
    """
    _, width, height, n_feat_map = bottom.get_shape().as_list()
    input_reshape = tf.reshape( bottom, [-1, width*height, n_feat_map] )  # order='C'
    input_transpose = tf.transpose( input_reshape, [2,0,1] )  # n_feat_map * batch * d

    with tf.variable_scope(name):
        W = tf.get_variable(
                "W",
                shape=[n_feat_map,width*height, width*height], # n_feat_map * d * d_filter
                initializer=tf.truncated_normal_initializer(0., 0.005))
        output = tf.batch_matmul(input_transpose, W)  # n_feat_map * batch * d_filter

        if bias == True:
            b = tf.get_variable(
                "b",
                shape=width*height,
                initializer=tf.constant_initializer(0.))
            output = tf.nn.bias_add(output, b)

    output_transpose = tf.transpose(output, [1,2,0])  # batch * d_filter * n_feat_map
    output_reshape = tf.reshape( output_transpose, [-1, width, height, n_feat_map] )
    return output_reshape 
開發者ID:rick-chang,項目名稱:OneNet,代碼行數:27,代碼來源:layers.py

示例6: channel_wise_fc_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def channel_wise_fc_layer(bottom, name, bias=True):
    """
    channel-wise fully connected layer
    """
    _, width, height, n_feat_map = bottom.get_shape().as_list()
    input_reshape = tf.reshape( bottom, [-1, width*height, n_feat_map] )  # order='C'
    input_transpose = tf.transpose( input_reshape, [2,0,1] )  # n_feat_map * batch * d

    with tf.variable_scope(name):
        W = tf.get_variable(
            "W",
            shape=[n_feat_map,width*height, width*height], # n_feat_map * d * d_filter
            initializer=tf.truncated_normal_initializer(0., 0.005))
        output = tf.batch_matmul(input_transpose, W)  # n_feat_map * batch * d_filter

        if bias == True:
            b = tf.get_variable(
                "b",
                shape=width*height,
                initializer=tf.constant_initializer(0.))
            output = tf.nn.bias_add(output, b)

    output_transpose = tf.transpose(output, [1,2,0])  # batch * d_filter * n_feat_map
    output_reshape = tf.reshape( output_transpose, [-1, width, height, n_feat_map] )
    return output_reshape 
開發者ID:rick-chang,項目名稱:OneNet,代碼行數:27,代碼來源:layers_nearest_2.py

示例7: test_MatMul

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def test_MatMul(self):
        t = tf.matmul(*self.random((4, 3), (3, 5)), transpose_a=False, transpose_b=False)
        self.check(t)
        t = tf.matmul(*self.random((3, 4), (3, 5)), transpose_a=True, transpose_b=False)
        self.check(t)
        t = tf.matmul(*self.random((4, 3), (5, 3)), transpose_a=False, transpose_b=True)
        self.check(t)
        t = tf.matmul(*self.random((3, 4), (5, 3)), transpose_a=True, transpose_b=True)
        self.check(t)

    # def test_BatchMatMul(self):
    #     t = tf.batch_matmul(*self.random((2, 4, 4, 3), (2, 4, 3, 5)), adj_x=False, adj_y=False)
    #     self.check(t)
    #     t = tf.batch_matmul(*self.random((2, 4, 3, 4), (2, 4, 3, 5)), adj_x=True, adj_y=False)
    #     self.check(t)
    #     t = tf.batch_matmul(*self.random((2, 4, 4, 3), (2, 4, 5, 3)), adj_x=False, adj_y=True)
    #     self.check(t)
    #     t = tf.batch_matmul(*self.random((2, 4, 3, 4), (2, 4, 5, 3)), adj_x=True, adj_y=True)
    #     self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:21,代碼來源:ops.py

示例8: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def __call__(self, u_t, a, b, scope=None):
        """

        :param u_t: [N, M, d]
        :param a: [N, M. 1]
        :param b: [N, M. 1]
        :param mask:  [N, M]
        :return:
        """
        N, M, d = self.batch_size, self.mem_size, self.hidden_size
        L, sL = self.L, self.sL
        with tf.name_scope(scope or self.__class__.__name__):
            L = tf.tile(tf.expand_dims(L, 0), [N, 1, 1])
            sL = tf.tile(tf.expand_dims(sL, 0), [N, 1, 1])
            logb = tf.log(b + 1e-9)
            logb = tf.concat(1, [tf.zeros([N, 1, 1]), tf.slice(logb, [0, 1, 0], [-1, -1, -1])])
            left = L * tf.exp(tf.batch_matmul(L, logb * sL))  # [N, M, M]
            right = a * u_t  # [N, M, d]
            u = tf.batch_matmul(left, right)  # [N, M, d]
        return u 
開發者ID:uwnlp,項目名稱:qrn,代碼行數:22,代碼來源:model.py

示例9: channel_wise_fc_layer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def channel_wise_fc_layer(self, input, name): # bottom: (7x7x512)
        _, width, height, n_feat_map = input.get_shape().as_list()
        input_reshape = tf.reshape( input, [-1, width*height, n_feat_map] )
        input_transpose = tf.transpose( input_reshape, [2,0,1] )

        with tf.variable_scope(name):
            W = tf.get_variable(
                    "W",
                    shape=[n_feat_map,width*height, width*height], # (512,49,49)
                    initializer=tf.random_normal_initializer(0., 0.005))
            output = tf.batch_matmul(input_transpose, W)

        output_transpose = tf.transpose(output, [1,2,0])
        output_reshape = tf.reshape( output_transpose, [-1, height, width, n_feat_map] )

        return output_reshape 
開發者ID:jazzsaxmafia,項目名稱:Inpainting,代碼行數:18,代碼來源:model.py

示例10: _verifyInverse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def _verifyInverse(self, x):
    for np_type in [np.float32, np.float64]:
      for adjoint in False, True:
        y = x.astype(np_type)
        with self.test_session():
          # Verify that x^{-1} * x == Identity matrix.
          inv = tf.matrix_inverse(y, adjoint=adjoint)
          tf_ans = tf.batch_matmul(inv, y, adj_y=adjoint)
          np_ans = np.identity(y.shape[-1])
          if x.ndim > 2:
            tiling = list(y.shape)
            tiling[-2:] = [1, 1]
            np_ans = np.tile(np_ans, tiling)
          out = tf_ans.eval()
          self.assertAllClose(np_ans, out)
          self.assertShapeEqual(y, tf_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:matrix_inverse_op_test.py

示例11: _define_diag_covariance_probs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def _define_diag_covariance_probs(self, shard_id, shard):
    """Defines the diagonal covariance probabilities per example in a class.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.

    Returns a matrix num_examples * num_classes.
    """
    # num_classes X 1
    # TODO(xavigonzalvo): look into alternatives to log for
    # reparametrization of variance parameters.
    det_expanded = tf.reduce_sum(tf.log(self._covs + 1e-3),
                                 1, keep_dims=True)
    diff = shard - self._means
    x2 = tf.square(diff)
    cov_expanded = tf.expand_dims(1.0 / (self._covs + 1e-3), 2)
    # num_classes X num_examples
    x2_cov = tf.batch_matmul(x2, cov_expanded)
    x2_cov = tf.transpose(tf.squeeze(x2_cov, [2]))
    self._probs[shard_id] = -0.5 * (
        tf.to_float(self._dimensions) * tf.log(2.0 * np.pi) +
        tf.transpose(det_expanded) + x2_cov) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:gmm_ops.py

示例12: _define_partial_maximization_operation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
    """Computes the partial statistics of the means and covariances.

    Args:
      shard_id: current shard id.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    # Soft assignment of each data point to each of the two clusters.
    self._points_in_k[shard_id] = tf.reduce_sum(self._w[shard_id], 0,
                                                keep_dims=True)
    # Partial means.
    w_mul_x = tf.expand_dims(
        tf.matmul(self._w[shard_id],
                  tf.squeeze(shard, [0]), transpose_a=True), 1)
    self._w_mul_x.append(w_mul_x)
    # Partial covariances.
    x = tf.concat(0, [shard for _ in range(self._num_classes)])
    x_trans = tf.transpose(x, perm=[0, 2, 1])
    x_mul_w = tf.concat(0, [
        tf.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
        for k in range(self._num_classes)])
    self._w_mul_x2.append(tf.batch_matmul(x_mul_w, x)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:gmm_ops.py

示例13: _updated_mat

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def _updated_mat(self, mat, v, diag):
    # Get dense matrix defined by its square root, which is an update of `mat`:
    # A = (mat + v D v^T) (mat + v D v^T)^T
    # D is the diagonal matrix with `diag` on the diagonal.

    # If diag is None, then it defaults to the identity matrix, so DV^T = V^T
    if diag is None:
      diag_vt = tf.matrix_transpose(v)
    else:
      diag_mat = tf.matrix_diag(diag)
      diag_vt = tf.batch_matmul(diag_mat, v, adj_y=True)

    v_diag_vt = tf.batch_matmul(v, diag_vt)
    sqrt = mat + v_diag_vt
    a = tf.batch_matmul(sqrt, sqrt, adj_y=True)
    return a.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:operator_pd_vdvt_update_test.py

示例14: testSqrtMatmulSingleMatrix

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def testSqrtMatmulSingleMatrix(self):
    with self.test_session():
      batch_shape = ()
      for k in [1, 4]:
        x_shape = batch_shape + (k, 3)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)

        sqrt_operator_times_x = operator.sqrt_matmul(x)
        expected = tf.batch_matmul(chol, x)

        self.assertEqual(expected.get_shape(),
                         sqrt_operator_times_x.get_shape())
        self.assertAllClose(expected.eval(), sqrt_operator_times_x.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:operator_pd_cholesky_test.py

示例15: testSqrtMatmulBatchMatrixWithTranspose

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import batch_matmul [as 別名]
def testSqrtMatmulBatchMatrixWithTranspose(self):
    with self.test_session():
      batch_shape = (2, 3)
      for k in [1, 4]:
        x_shape = batch_shape + (5, k)
        x = self._rng.rand(*x_shape)
        chol_shape = batch_shape + (k, k)
        chol = self._random_cholesky_array(chol_shape)

        operator = operator_pd_cholesky.OperatorPDCholesky(chol)

        sqrt_operator_times_x = operator.sqrt_matmul(x, transpose_x=True)
        # tf.batch_matmul is defined x * y, so "y" is on the right, not "x".
        expected = tf.batch_matmul(chol, x, adj_y=True)

        self.assertEqual(expected.get_shape(),
                         sqrt_operator_times_x.get_shape())
        self.assertAllClose(expected.eval(), sqrt_operator_times_x.eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:operator_pd_cholesky_test.py


注:本文中的tensorflow.batch_matmul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。