本文整理匯總了Python中tensorflow.atanh方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.atanh方法的具體用法?Python tensorflow.atanh怎麽用?Python tensorflow.atanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.atanh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_forward_unary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def test_forward_unary():
def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
"""test unary operators"""
np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
out = op(in_data)
compare_tf_with_tvm([np_data], ['in_data:0'], out.name)
_test_forward_unary(tf.acos, -1, 1)
_test_forward_unary(tf.asin, -1, 1)
_test_forward_unary(tf.atanh, -1, 1)
_test_forward_unary(tf.sinh)
_test_forward_unary(tf.cosh)
_test_forward_unary(tf.acosh)
_test_forward_unary(tf.asinh)
_test_forward_unary(tf.atan)
_test_forward_unary(tf.sin)
_test_forward_unary(tf.cos)
_test_forward_unary(tf.tan)
_test_forward_unary(tf.tanh)
_test_forward_unary(tf.erf)
_test_forward_unary(tf.log)
_test_forward_unary(tf.log1p)
示例2: testDiscretizedMixLogisticLoss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def testDiscretizedMixLogisticLoss(self):
batch = 2
height = 4
width = 4
channels = 3
num_mixtures = 5
logits = tf.concat( # assign all probability mass to first component
[tf.ones([batch, height, width, 1]) * 1e8,
tf.zeros([batch, height, width, num_mixtures - 1])],
axis=-1)
locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-.9, maxval=.9)
log_scales = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-1., maxval=1.)
coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)
# Test labels that don't satisfy edge cases where 8-bit value is 0 or 255.
labels = tf.random_uniform([batch, height, width, channels],
minval=-.9, maxval=.9)
locs_0 = locs[..., :3]
log_scales_0 = log_scales[..., :3]
centered_labels = labels - locs_0
inv_stdv = tf.exp(-log_scales_0)
plus_in = inv_stdv * (centered_labels + 1. / 255.)
min_in = inv_stdv * (centered_labels - 1. / 255.)
cdf_plus = tf.nn.sigmoid(plus_in)
cdf_min = tf.nn.sigmoid(min_in)
expected_loss = -tf.reduce_sum(tf.log(cdf_plus - cdf_min), axis=-1)
actual_loss = common_layers.discretized_mix_logistic_loss(
pred=pred, labels=labels)
with self.test_session() as session:
actual_loss_val, expected_loss_val = session.run(
[actual_loss, expected_loss])
self.assertAllClose(actual_loss_val, expected_loss_val, rtol=1e-5)
示例3: testSampleFromDiscretizedMixLogistic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def testSampleFromDiscretizedMixLogistic(self):
batch = 2
height = 4
width = 4
num_mixtures = 5
seed = 42
logits = tf.concat( # assign all probability mass to first component
[tf.ones([batch, height, width, 1]) * 1e8,
tf.zeros([batch, height, width, num_mixtures - 1])],
axis=-1)
locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-.9, maxval=.9)
log_scales = tf.ones([batch, height, width, num_mixtures * 3]) * -1e8
coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)
locs_0 = locs[..., :3]
expected_sample = tf.clip_by_value(locs_0, -1., 1.)
actual_sample = common_layers.sample_from_discretized_mix_logistic(
pred, seed=seed)
with self.test_session() as session:
actual_sample_val, expected_sample_val = session.run(
[actual_sample, expected_sample])
# Use a low tolerance: samples numerically differ, as the actual
# implementation clips log-scales so they always contribute to sampling.
self.assertAllClose(actual_sample_val, expected_sample_val, atol=1e-2)
示例4: _graph_fn_unsquash
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _graph_fn_unsquash(self, values):
"""
Reverse operation as _graph_fn_squash (using argus tanh).
Args:
values (DataOp): The values to unsquash.
Returns:
The unsquashed values.
"""
if get_backend() == "tf":
return tf.atanh((values - self.low) / (self.high - self.low) * 2.0 - 1.0)
elif get_backend() == "tf":
return torch.atanh((values - self.low) / (self.high - self.low) * 2.0 - 1.0)
示例5: testDiscretizedMixLogisticLoss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def testDiscretizedMixLogisticLoss(self):
batch = 2
height = 4
width = 4
channels = 3
num_mixtures = 5
logits = tf.concat( # assign all probability mass to first component
[tf.ones([batch, height, width, 1]) * 1e8,
tf.zeros([batch, height, width, num_mixtures - 1])],
axis=-1)
locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-.9, maxval=.9)
log_scales = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-1., maxval=1.)
coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)
# Test labels that don't satisfy edge cases where 8-bit value is 0 or 255.
labels = tf.random_uniform([batch, height, width, channels],
minval=-.9, maxval=.9)
locs_0 = locs[..., :3]
log_scales_0 = log_scales[..., :3]
centered_labels = labels - locs_0
inv_stdv = tf.exp(-log_scales_0)
plus_in = inv_stdv * (centered_labels + 1. / 255.)
min_in = inv_stdv * (centered_labels - 1. / 255.)
cdf_plus = tf.nn.sigmoid(plus_in)
cdf_min = tf.nn.sigmoid(min_in)
expected_loss = -tf.reduce_sum(tf.log(cdf_plus - cdf_min), axis=-1)
actual_loss = common_layers.discretized_mix_logistic_loss(
pred=pred, labels=labels)
actual_loss_val, expected_loss_val = self.evaluate(
[actual_loss, expected_loss])
self.assertAllClose(actual_loss_val, expected_loss_val, rtol=1e-5)
示例6: testSampleFromDiscretizedMixLogistic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def testSampleFromDiscretizedMixLogistic(self):
batch = 2
height = 4
width = 4
num_mixtures = 5
seed = 42
logits = tf.concat( # assign all probability mass to first component
[tf.ones([batch, height, width, 1]) * 1e8,
tf.zeros([batch, height, width, num_mixtures - 1])],
axis=-1)
locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
minval=-.9, maxval=.9)
log_scales = tf.ones([batch, height, width, num_mixtures * 3]) * -1e8
coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)
locs_0 = locs[..., :3]
expected_sample = tf.clip_by_value(locs_0, -1., 1.)
actual_sample = common_layers.sample_from_discretized_mix_logistic(
pred, seed=seed)
actual_sample_val, expected_sample_val = self.evaluate(
[actual_sample, expected_sample])
# Use a low tolerance: samples numerically differ, as the actual
# implementation clips log-scales so they always contribute to sampling.
self.assertAllClose(actual_sample_val, expected_sample_val, atol=1e-2)
示例7: artanh
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def artanh(x):
eps = BALL_EPS[x.dtype]
return tf.atanh(tf.minimum(tf.maximum(x, -1 + eps), 1 - eps))
示例8: squash_correction
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def squash_correction(actions, squashed=True):
if squashed:
actions = tf.atanh(actions)
return tf.reduce_sum(tf.math.log(1 - tf.tanh(actions) ** 2 + EPS), axis=1)
示例9: _inverse
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _inverse(self, y):
return tf.atanh(y)
示例10: tf_atanh
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def tf_atanh(x):
return tf.atanh(tf.minimum(x, 1. - EPS)) # Only works for positive real x.
# Real x, not vector!
示例11: _inverse
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _inverse(self, y):
precision = 0.99999997
clipped = tf.where(
tf.less_equal(tf.abs(y), 1.),
tf.clip_by_value(y, -precision, precision), y)
# y = tf.stop_gradient(clipped) + y - tf.stop_gradient(y)
return tf.atanh(clipped)
示例12: _GetActvFn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _GetActvFn(name):
'''
Helper function for selecting an activation function
name: The name of the activation function
return: A handle for the tensorflow activation function
'''
return {'atanh': tf.atanh, 'elu': tf.nn.elu,
'ident': tf.identity,
'sig': tf.sigmoid, 'softplus': tf.nn.softplus,
'softsign': tf.nn.softsign, 'relu': tf.nn.relu,
'relu6': tf.nn.relu6, 'tanh': tf.tanh}.get(name)
示例13: log_pis_for
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def log_pis_for(self, actions):
raw_actions = actions
if self._squash:
raw_actions = tf.atanh(actions)
log_pis = self._distribution.log_prob(raw_actions)
log_pis -= self._squash_correction(raw_actions)
return log_pis
return self._distribution.log_prob(raw_actions)
示例14: _create_opponent_prior_update
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _create_opponent_prior_update(self):
prior = self._get_opponent_prior(self._recent_opponent_observations_ph)
raw_actions = tf.atanh(self._recent_opponent_actions_pl)
log_pis = prior.dist.log_prob(raw_actions)
log_pis = log_pis - squash_correction(raw_actions)
loss = -tf.reduce_mean(log_pis) + prior.reg_loss_t
vars = U.scope_vars(self._opponent_prior_scope)
with tf.variable_scope('opponent_prior_opt_agent_{}'.format(self._agent_id), reuse=tf.AUTO_REUSE):
if self._train_policy:
optimizer = tf.train.AdamOptimizer(self._policy_lr)
prior_training_op = optimizer.minimize(
loss=loss,
var_list=vars)
self._training_ops.append(prior_training_op)
示例15: _create_opponent_p_update
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atanh [as 別名]
def _create_opponent_p_update(self):
opponent_actions, opponent_actions_log_pis, reg_loss = self.opponent_policy.actions_for(
observations=self._observations_ph,
reuse=tf.AUTO_REUSE, with_log_pis=True, return_reg=True)
assert_shape(opponent_actions, [None, self._opponent_action_dim])
prior = self._get_opponent_prior(self._observations_ph)
raw_actions = tf.atanh(opponent_actions)
prior_log_pis = prior.dist.log_prob(raw_actions)
prior_log_pis = prior_log_pis - squash_correction(raw_actions)
actions, agent_log_pis = self.policy.actions_for(observations=self._observations_ph,
reuse=tf.AUTO_REUSE,
with_log_pis=True,
opponent_actions=opponent_actions)
q_values = self.joint_qf.output_for(
self._observations_ph, actions, opponent_actions, reuse=True)
opponent_p_loss = tf.reduce_mean(opponent_actions_log_pis) - tf.reduce_mean(prior_log_pis) - tf.reduce_mean(q_values) + self._annealing_pl * agent_log_pis
opponent_p_loss = opponent_p_loss + reg_loss
with tf.variable_scope('opponent_policy_opt_agent_{}'.format(self._agent_id), reuse=tf.AUTO_REUSE):
if self._train_policy:
optimizer = tf.train.AdamOptimizer(self._policy_lr)
om_training_op = optimizer.minimize(
loss=opponent_p_loss,
var_list=self.opponent_policy.get_params_internal())
self._training_ops.append(om_training_op)