本文整理匯總了Python中tensorflow.atan方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.atan方法的具體用法?Python tensorflow.atan怎麽用?Python tensorflow.atan使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.atan方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: atan2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(x, y, epsilon=1.0e-12):
"""
A hack until the tf developers implement a function that can find the angle from an x and y co-
ordinate.
:param x:
:param epsilon:
:return:
"""
# Add a small number to all zeros, to avoid division by zero:
x = tf.where(tf.equal(x, 0.0), x + epsilon, x)
y = tf.where(tf.equal(y, 0.0), y + epsilon, y)
angle = tf.where(tf.greater(x, 0.0), tf.atan(y / x), tf.zeros_like(x))
angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.greater_equal(y, 0.0)), tf.atan(y / x) + np.pi, angle)
angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.less(y, 0.0)), tf.atan(y / x) - np.pi, angle)
angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.greater(y, 0.0)), 0.5 * np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.less(y, 0.0)), -0.5 * np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.equal(y, 0.0)), tf.zeros_like(x), angle)
return angle
示例2: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def __init__(self, config):
self.config = config
self.n_steps = 10
self.n_input, self.n_hidden = 4, 2
self.state = tf.Variable(tf.random_normal(shape=[1, 4]))
self.lstm = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=False)
self.Wc, self.bc = self.init_controller_vars()
self.Wv, self.bv = self.init_value_vars()
# Other functions used in the paper
# self.full_list_unary = {1:lambda x:x ,2:lambda x: -x, 3: tf.abs, 4:lambda x : tf.pow(x,2),5:lambda x : tf.pow(x,3),
# 6:tf.sqrt,7:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x,
# 8:lambda x : x + tf.Variable(tf.truncated_normal([1], stddev=0.08)),9:lambda x: tf.log(tf.abs(x)+10e-8),
# 10:tf.exp,11:tf.sin,12:tf.sinh,13:tf.cosh,14:tf.tanh,15:tf.asinh,16:tf.atan,17:lambda x: tf.sin(x)/x,
# 18:lambda x : tf.maximum(x,0),19:lambda x : tf.minimum(x,0),20:tf.sigmoid,21:lambda x:tf.log(1+tf.exp(x)),
# 22:lambda x:tf.exp(-tf.pow(x,2)),23:tf.erf,24:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))}
#
# self.full_list_binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:x/(y+10e-8),
# 5:lambda x,y:tf.maximum(x,y),6:lambda x,y: tf.sigmoid(x)*y,7:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.pow(x-y,2)),
# 8:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.abs(x-y)),
# 9:lambda x,y: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x + (1-tf.Variable(tf.truncated_normal([1], stddev=0.08)))*y}
#
# self.unary = {1:lambda x:x ,2:lambda x: -x, 3: lambda x: tf.maximum(x,0), 4:lambda x : tf.pow(x,2),5:tf.tanh}
# binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:tf.maximum(x,y),5:lambda x,y: tf.sigmoid(x)*y}
# inputs = {1:lambda x:x , 2:lambda x:0, 3: lambda x:3.14159265,4: lambda x : 1, 5: lambda x: 1.61803399}
示例3: test_forward_unary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def test_forward_unary():
def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
"""test unary operators"""
np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
tf.reset_default_graph()
with tf.Graph().as_default():
in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
out = op(in_data)
compare_tf_with_tvm([np_data], ['in_data:0'], out.name)
_test_forward_unary(tf.acos, -1, 1)
_test_forward_unary(tf.asin, -1, 1)
_test_forward_unary(tf.atanh, -1, 1)
_test_forward_unary(tf.sinh)
_test_forward_unary(tf.cosh)
_test_forward_unary(tf.acosh)
_test_forward_unary(tf.asinh)
_test_forward_unary(tf.atan)
_test_forward_unary(tf.sin)
_test_forward_unary(tf.cos)
_test_forward_unary(tf.tan)
_test_forward_unary(tf.tanh)
_test_forward_unary(tf.erf)
_test_forward_unary(tf.log)
_test_forward_unary(tf.log1p)
示例4: atan2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(y, x):
""" My implementation of atan2 in tensorflow. Returns in -pi .. pi."""
tan = tf.atan(y / (x + 1e-8)) # this returns in -pi/2 .. pi/2
one_map = tf.ones_like(tan)
# correct quadrant error
correction = tf.where(tf.less(x + 1e-8, 0.0), 3.141592653589793*one_map, 0.0*one_map)
tan_c = tan + correction # this returns in -pi/2 .. 3pi/2
# bring to positive values
correction = tf.where(tf.less(tan_c, 0.0), 2*3.141592653589793*one_map, 0.0*one_map)
tan_zero_2pi = tan_c + correction # this returns in 0 .. 2pi
# make symmetric
correction = tf.where(tf.greater(tan_zero_2pi, 3.141592653589793), -2*3.141592653589793*one_map, 0.0*one_map)
tan_final = tan_zero_2pi + correction # this returns in -pi .. pi
return tan_final
示例5: _atan2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def _atan2(y, x):
""" My implementation of atan2 in tensorflow. Returns in -pi .. pi."""
tan = tf.atan(y / (x + 1e-8)) # this returns in -pi/2 .. pi/2
one_map = tf.ones_like(tan)
# correct quadrant error
correction = tf.where(tf.less(x + 1e-8, 0.0), 3.141592653589793*one_map, 0.0*one_map)
tan_c = tan + correction # this returns in -pi/2 .. 3pi/2
# bring to positive values
correction = tf.where(tf.less(tan_c, 0.0), 2*3.141592653589793*one_map, 0.0*one_map)
tan_zero_2pi = tan_c + correction # this returns in 0 .. 2pi
# make symmetric
correction = tf.where(tf.greater(tan_zero_2pi, 3.141592653589793), -2*3.141592653589793*one_map, 0.0*one_map)
tan_final = tan_zero_2pi + correction # this returns in -pi .. pi
return tan_final
示例6: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def call(self, inputs, mask=None):
# Import graph tensors
# scalar_features = (samples, max_atoms, atom_feat)
# vector_features = (samples, max_atoms, coor_dims, atom_feat)
scalar_features, vector_features = inputs
# Get parameters
coor_dims = int(vector_features.shape[2])
atom_feat = int(vector_features.shape[-1])
# Integrate over atom axis
if self.pooling == "sum":
scalar_features = tf.reduce_sum(scalar_features, axis=1)
vector_features = tf.reduce_sum(vector_features, axis=1)
elif self.pooling == "max":
scalar_features = tf.reduce_max(scalar_features, axis=1)
vector_features = tf.transpose(vector_features, perm=[0, 2, 3, 1])
size = tf.sqrt(tf.reduce_sum(tf.square(vector_features), axis=1))
idx = tf.reshape(tf.argmax(size, axis=-1, output_type=tf.int32), [-1, 1, atom_feat, 1])
idx = tf.tile(idx, [1, coor_dims, 1, 1])
vector_features = tf.reshape(tf.batch_gather(vector_features, idx), [-1, coor_dims, atom_feat])
# Activation
scalar_features = self.activation(scalar_features)
vector_features = self.activation(vector_features)
if self.system == "spherical":
x, y, z = tf.unstack(vector_features, axis=1)
r = tf.sqrt(tf.square(x) + tf.square(y) + tf.square(z))
t = tf.acos(tf.divide(z, r + tf.cast(tf.equal(r, 0), dtype=float)))
p = tf.atan(tf.divide(y, x + tf.cast(tf.equal(x, 0), dtype=float)))
vector_features = tf.stack([r, t, p], axis=1)
return [scalar_features, vector_features]
示例7: smooth_l1_loss_atan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def smooth_l1_loss_atan(targets, preds, anchor_state, sigma=3.0, weight=None):
sigma_squared = sigma ** 2
indices = tf.reshape(tf.where(tf.equal(anchor_state, 1)), [-1, ])
preds = tf.gather(preds, indices)
targets = tf.gather(targets, indices)
# compute smooth L1 loss
# f(x) = 0.5 * (sigma * x)^2 if |x| < 1 / sigma / sigma
# |x| - 0.5 / sigma / sigma otherwise
regression_diff = preds - targets
regression_diff = tf.abs(regression_diff)
regression_diff = tf.reshape(regression_diff, [-1, 5])
dx, dy, dw, dh, dtheta = tf.unstack(regression_diff, axis=-1)
dtheta = tf.atan(dtheta)
regression_diff = tf.transpose(tf.stack([dx, dy, dw, dh, dtheta]))
regression_loss = tf.where(
tf.less(regression_diff, 1.0 / sigma_squared),
0.5 * sigma_squared * tf.pow(regression_diff, 2),
regression_diff - 0.5 / sigma_squared
)
if weight is not None:
regression_loss = tf.reduce_sum(regression_loss, axis=-1)
weight = tf.gather(weight, indices)
regression_loss *= weight
normalizer = tf.stop_gradient(tf.where(tf.equal(anchor_state, 1)))
normalizer = tf.cast(tf.shape(normalizer)[0], tf.float32)
normalizer = tf.maximum(1.0, normalizer)
# normalizer = tf.stop_gradient(tf.cast(tf.equal(anchor_state, 1), tf.float32))
# normalizer = tf.maximum(tf.reduce_sum(normalizer), 1)
return tf.reduce_sum(regression_loss) / normalizer
示例8: test_Atan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def test_Atan(self):
t = tf.atan(self.random(4, 3))
self.check(t)
示例9: smooth_l1_loss_atan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def smooth_l1_loss_atan(targets, preds, anchor_state, sigma=3.0):
sigma_squared = sigma ** 2
indices = tf.reshape(tf.where(tf.equal(anchor_state, 1)), [-1, ])
preds = tf.gather(preds, indices)
targets = tf.gather(targets, indices)
# compute smooth L1 loss
# f(x) = 0.5 * (sigma * x)^2 if |x| < 1 / sigma / sigma
# |x| - 0.5 / sigma / sigma otherwise
regression_diff = preds - targets
regression_diff = tf.abs(regression_diff)
regression_diff = tf.reshape(regression_diff, [-1, 5])
dx, dy, dw, dh, dtheta = tf.unstack(regression_diff, axis=-1)
dtheta = tf.atan(dtheta)
regression_diff = tf.transpose(tf.stack([dx, dy, dw, dh, dtheta]))
regression_loss = tf.where(
tf.less(regression_diff, 1.0 / sigma_squared),
0.5 * sigma_squared * tf.pow(regression_diff, 2),
regression_diff - 0.5 / sigma_squared
)
normalizer = tf.stop_gradient(tf.where(tf.equal(anchor_state, 1)))
normalizer = tf.cast(tf.shape(normalizer)[0], tf.float32)
normalizer = tf.maximum(1.0, normalizer)
# normalizer = tf.stop_gradient(tf.cast(tf.equal(anchor_state, 1), tf.float32))
# normalizer = tf.maximum(tf.reduce_sum(normalizer), 1)
return tf.reduce_sum(regression_loss) / normalizer
示例10: testFloatBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testFloatBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
y = (x + .5).astype(np.float32) # no zero
z = (x + 15.5).astype(np.float32) # all positive
k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例11: testFloatEmpty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testFloatEmpty(self):
x = np.empty((2, 0, 5), dtype=np.float32)
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(x, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(x, np.sqrt, tf.sqrt)
self._compareBoth(x, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(x, np.log, tf.log)
self._compareBoth(x, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(x, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
# Can't use vectorize below, so just use some arbitrary function
self._compareBoth(x, np.sign, tf.lgamma)
self._compareBoth(x, np.sign, tf.erf)
self._compareBoth(x, np.sign, tf.erfc)
self._compareBoth(x, np.tan, tf.tan)
self._compareBoth(x, np.arcsin, tf.asin)
self._compareBoth(x, np.arccos, tf.acos)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(x, np.sign, tf.sign)
self._compareBothSparse(x, np.sign, tf.erf)
示例12: testDoubleBasic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testDoubleBasic(self):
x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64)
y = (x + .5).astype(np.float64) # no zero
z = (x + 15.5).astype(np.float64) # all positive
k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1
self._compareBoth(x, np.abs, tf.abs)
self._compareBoth(x, np.abs, _ABS)
self._compareBoth(x, np.negative, tf.neg)
self._compareBoth(x, np.negative, _NEG)
self._compareBoth(y, self._inv, tf.inv)
self._compareBoth(x, np.square, tf.square)
self._compareBoth(z, np.sqrt, tf.sqrt)
self._compareBoth(z, self._rsqrt, tf.rsqrt)
self._compareBoth(x, np.exp, tf.exp)
self._compareBoth(z, np.log, tf.log)
self._compareBoth(z, np.log1p, tf.log1p)
self._compareBoth(x, np.tanh, tf.tanh)
self._compareBoth(x, self._sigmoid, tf.sigmoid)
self._compareBoth(y, np.sign, tf.sign)
self._compareBoth(x, np.sin, tf.sin)
self._compareBoth(x, np.cos, tf.cos)
self._compareBoth(
y,
np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
tf.lgamma)
self._compareBoth(x, np.vectorize(math.erf), tf.erf)
self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
self._compareBoth(x, np.arctan, tf.atan)
self._compareBoth(k, np.arcsin, tf.asin)
self._compareBoth(k, np.arccos, tf.acos)
self._compareBoth(k, np.tan, tf.tan)
self._compareBothSparse(x, np.abs, tf.abs)
self._compareBothSparse(x, np.negative, tf.neg)
self._compareBothSparse(x, np.square, tf.square)
self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
self._compareBothSparse(x, np.tanh, tf.tanh)
self._compareBothSparse(y, np.sign, tf.sign)
self._compareBothSparse(x, np.vectorize(math.erf), tf.erf)
示例13: atan2
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(y, x):
angle = tf.where(tf.greater(x,0.0), tf.atan(y/x), tf.zeros_like(x))
angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.greater_equal(y,0.0)),
tf.atan(y/x) + np.pi, angle)
angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.less(y,0.0)),
tf.atan(y/x) - np.pi, angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.greater(y,0.0)),
np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.less(y,0.0)),
-np.pi * tf.ones_like(x), angle)
angle = tf.where(tf.logical_and(tf.equal(x,0.0),tf.equal(y,0.0)),
np.nan * tf.zeros_like(x), angle)
return angle
示例14: tf_arctan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def tf_arctan(x):
return tf.atan(x)
示例15: tf_arctan
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def tf_arctan(x): return tf.atan(x)