當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.atan方法代碼示例

本文整理匯總了Python中tensorflow.atan方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.atan方法的具體用法?Python tensorflow.atan怎麽用?Python tensorflow.atan使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.atan方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: atan2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(x, y, epsilon=1.0e-12):
    """
    A hack until the tf developers implement a function that can find the angle from an x and y co-
    ordinate.
    :param x:
    :param epsilon:
    :return:
    """
    # Add a small number to all zeros, to avoid division by zero:
    x = tf.where(tf.equal(x, 0.0), x + epsilon, x)
    y = tf.where(tf.equal(y, 0.0), y + epsilon, y)

    angle = tf.where(tf.greater(x, 0.0), tf.atan(y / x), tf.zeros_like(x))
    angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.greater_equal(y, 0.0)), tf.atan(y / x) + np.pi, angle)
    angle = tf.where(tf.logical_and(tf.less(x, 0.0), tf.less(y, 0.0)), tf.atan(y / x) - np.pi, angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.greater(y, 0.0)), 0.5 * np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.less(y, 0.0)), -0.5 * np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x, 0.0), tf.equal(y, 0.0)), tf.zeros_like(x), angle)
    return angle 
開發者ID:tu-rbo,項目名稱:differentiable-particle-filters,代碼行數:21,代碼來源:method_utils.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def __init__(self, config):
        self.config = config
        self.n_steps = 10
        self.n_input, self.n_hidden =  4, 2
        self.state = tf.Variable(tf.random_normal(shape=[1, 4]))
        self.lstm = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=False)
        self.Wc, self.bc = self.init_controller_vars()
        self.Wv, self.bv = self.init_value_vars()

        # Other functions used in the paper
        # self.full_list_unary = {1:lambda x:x ,2:lambda x: -x, 3: tf.abs, 4:lambda x : tf.pow(x,2),5:lambda x : tf.pow(x,3),
        #   6:tf.sqrt,7:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x,
        #   8:lambda x : x + tf.Variable(tf.truncated_normal([1], stddev=0.08)),9:lambda x: tf.log(tf.abs(x)+10e-8),
        #   10:tf.exp,11:tf.sin,12:tf.sinh,13:tf.cosh,14:tf.tanh,15:tf.asinh,16:tf.atan,17:lambda x: tf.sin(x)/x,
        #   18:lambda x : tf.maximum(x,0),19:lambda x : tf.minimum(x,0),20:tf.sigmoid,21:lambda x:tf.log(1+tf.exp(x)),
        #   22:lambda x:tf.exp(-tf.pow(x,2)),23:tf.erf,24:lambda x: tf.Variable(tf.truncated_normal([1], stddev=0.08))}
        #
        # self.full_list_binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:x/(y+10e-8),
        # 5:lambda x,y:tf.maximum(x,y),6:lambda x,y: tf.sigmoid(x)*y,7:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.pow(x-y,2)),
        # 8:lambda x,y:tf.exp(-tf.Variable(tf.truncated_normal([1], stddev=0.08))*tf.abs(x-y)),
        # 9:lambda x,y: tf.Variable(tf.truncated_normal([1], stddev=0.08))*x + (1-tf.Variable(tf.truncated_normal([1], stddev=0.08)))*y}
        #
        # self.unary = {1:lambda x:x ,2:lambda x: -x, 3: lambda x: tf.maximum(x,0), 4:lambda x : tf.pow(x,2),5:tf.tanh}
        # binary = {1:lambda x,y: x+y,2:lambda x,y:x*y,3:lambda x,y:x-y,4:lambda x,y:tf.maximum(x,y),5:lambda x,y: tf.sigmoid(x)*y}
        # inputs = {1:lambda x:x , 2:lambda x:0, 3: lambda x:3.14159265,4: lambda x : 1, 5: lambda x: 1.61803399} 
開發者ID:Neoanarika,項目名稱:Searching-for-activation-functions,代碼行數:27,代碼來源:rnn_controller.py

示例3: test_forward_unary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def test_forward_unary():
    def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
        """test unary operators"""
        np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
        tf.reset_default_graph()
        with tf.Graph().as_default():
            in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
            out = op(in_data)
            compare_tf_with_tvm([np_data], ['in_data:0'], out.name)

    _test_forward_unary(tf.acos, -1, 1)
    _test_forward_unary(tf.asin, -1, 1)
    _test_forward_unary(tf.atanh, -1, 1)
    _test_forward_unary(tf.sinh)
    _test_forward_unary(tf.cosh)
    _test_forward_unary(tf.acosh)
    _test_forward_unary(tf.asinh)
    _test_forward_unary(tf.atan)
    _test_forward_unary(tf.sin)
    _test_forward_unary(tf.cos)
    _test_forward_unary(tf.tan)
    _test_forward_unary(tf.tanh)
    _test_forward_unary(tf.erf)
    _test_forward_unary(tf.log)
    _test_forward_unary(tf.log1p) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例4: atan2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(y, x):
    """ My implementation of atan2 in tensorflow.  Returns in -pi .. pi."""
    tan = tf.atan(y / (x + 1e-8))  # this returns in -pi/2 .. pi/2

    one_map = tf.ones_like(tan)

    # correct quadrant error
    correction = tf.where(tf.less(x + 1e-8, 0.0), 3.141592653589793*one_map, 0.0*one_map)
    tan_c = tan + correction  # this returns in -pi/2 .. 3pi/2

    # bring to positive values
    correction = tf.where(tf.less(tan_c, 0.0), 2*3.141592653589793*one_map, 0.0*one_map)
    tan_zero_2pi = tan_c + correction  # this returns in 0 .. 2pi

    # make symmetric
    correction = tf.where(tf.greater(tan_zero_2pi, 3.141592653589793), -2*3.141592653589793*one_map, 0.0*one_map)
    tan_final = tan_zero_2pi + correction  # this returns in -pi .. pi
    return tan_final 
開發者ID:lmb-freiburg,項目名稱:hand3d,代碼行數:20,代碼來源:canonical_trafo.py

示例5: _atan2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def _atan2(y, x):
    """ My implementation of atan2 in tensorflow.  Returns in -pi .. pi."""
    tan = tf.atan(y / (x + 1e-8))  # this returns in -pi/2 .. pi/2

    one_map = tf.ones_like(tan)

    # correct quadrant error
    correction = tf.where(tf.less(x + 1e-8, 0.0), 3.141592653589793*one_map, 0.0*one_map)
    tan_c = tan + correction  # this returns in -pi/2 .. 3pi/2

    # bring to positive values
    correction = tf.where(tf.less(tan_c, 0.0), 2*3.141592653589793*one_map, 0.0*one_map)
    tan_zero_2pi = tan_c + correction  # this returns in 0 .. 2pi

    # make symmetric
    correction = tf.where(tf.greater(tan_zero_2pi, 3.141592653589793), -2*3.141592653589793*one_map, 0.0*one_map)
    tan_final = tan_zero_2pi + correction  # this returns in -pi .. pi
    return tan_final 
開發者ID:lmb-freiburg,項目名稱:hand3d,代碼行數:20,代碼來源:relative_trafo.py

示例6: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def call(self, inputs, mask=None):
        # Import graph tensors
        # scalar_features = (samples, max_atoms, atom_feat)
        # vector_features = (samples, max_atoms, coor_dims, atom_feat)
        scalar_features, vector_features = inputs

        # Get parameters
        coor_dims = int(vector_features.shape[2])
        atom_feat = int(vector_features.shape[-1])

        # Integrate over atom axis
        if self.pooling == "sum":
            scalar_features = tf.reduce_sum(scalar_features, axis=1)
            vector_features = tf.reduce_sum(vector_features, axis=1)

        elif self.pooling == "max":
            scalar_features = tf.reduce_max(scalar_features, axis=1)

            vector_features = tf.transpose(vector_features, perm=[0, 2, 3, 1])
            size = tf.sqrt(tf.reduce_sum(tf.square(vector_features), axis=1))
            idx = tf.reshape(tf.argmax(size, axis=-1, output_type=tf.int32), [-1, 1, atom_feat, 1])
            idx = tf.tile(idx, [1, coor_dims, 1, 1])
            vector_features = tf.reshape(tf.batch_gather(vector_features, idx), [-1, coor_dims, atom_feat])

        # Activation
        scalar_features = self.activation(scalar_features)
        vector_features = self.activation(vector_features)

        if self.system == "spherical":
            x, y, z = tf.unstack(vector_features, axis=1)
            r = tf.sqrt(tf.square(x) + tf.square(y) + tf.square(z))
            t = tf.acos(tf.divide(z, r + tf.cast(tf.equal(r, 0), dtype=float)))
            p = tf.atan(tf.divide(y, x + tf.cast(tf.equal(x, 0), dtype=float)))
            vector_features = tf.stack([r, t, p], axis=1)

        return [scalar_features, vector_features] 
開發者ID:blackmints,項目名稱:3DGCN,代碼行數:38,代碼來源:layer.py

示例7: smooth_l1_loss_atan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def smooth_l1_loss_atan(targets, preds, anchor_state, sigma=3.0, weight=None):

    sigma_squared = sigma ** 2
    indices = tf.reshape(tf.where(tf.equal(anchor_state, 1)), [-1, ])
    preds = tf.gather(preds, indices)
    targets = tf.gather(targets, indices)

    # compute smooth L1 loss
    # f(x) = 0.5 * (sigma * x)^2          if |x| < 1 / sigma / sigma
    #        |x| - 0.5 / sigma / sigma    otherwise
    regression_diff = preds - targets
    regression_diff = tf.abs(regression_diff)

    regression_diff = tf.reshape(regression_diff, [-1, 5])
    dx, dy, dw, dh, dtheta = tf.unstack(regression_diff, axis=-1)
    dtheta = tf.atan(dtheta)
    regression_diff = tf.transpose(tf.stack([dx, dy, dw, dh, dtheta]))

    regression_loss = tf.where(
        tf.less(regression_diff, 1.0 / sigma_squared),
        0.5 * sigma_squared * tf.pow(regression_diff, 2),
        regression_diff - 0.5 / sigma_squared
    )

    if weight is not None:
        regression_loss = tf.reduce_sum(regression_loss, axis=-1)
        weight = tf.gather(weight, indices)
        regression_loss *= weight

    normalizer = tf.stop_gradient(tf.where(tf.equal(anchor_state, 1)))
    normalizer = tf.cast(tf.shape(normalizer)[0], tf.float32)
    normalizer = tf.maximum(1.0, normalizer)

    # normalizer = tf.stop_gradient(tf.cast(tf.equal(anchor_state, 1), tf.float32))
    # normalizer = tf.maximum(tf.reduce_sum(normalizer), 1)

    return tf.reduce_sum(regression_loss) / normalizer 
開發者ID:Thinklab-SJTU,項目名稱:R3Det_Tensorflow,代碼行數:39,代碼來源:losses_win.py

示例8: test_Atan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def test_Atan(self):
        t = tf.atan(self.random(4, 3))
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:5,代碼來源:ops.py

示例9: smooth_l1_loss_atan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def smooth_l1_loss_atan(targets, preds, anchor_state, sigma=3.0):

    sigma_squared = sigma ** 2
    indices = tf.reshape(tf.where(tf.equal(anchor_state, 1)), [-1, ])
    preds = tf.gather(preds, indices)
    targets = tf.gather(targets, indices)

    # compute smooth L1 loss
    # f(x) = 0.5 * (sigma * x)^2          if |x| < 1 / sigma / sigma
    #        |x| - 0.5 / sigma / sigma    otherwise
    regression_diff = preds - targets
    regression_diff = tf.abs(regression_diff)

    regression_diff = tf.reshape(regression_diff, [-1, 5])
    dx, dy, dw, dh, dtheta = tf.unstack(regression_diff, axis=-1)
    dtheta = tf.atan(dtheta)
    regression_diff = tf.transpose(tf.stack([dx, dy, dw, dh, dtheta]))

    regression_loss = tf.where(
        tf.less(regression_diff, 1.0 / sigma_squared),
        0.5 * sigma_squared * tf.pow(regression_diff, 2),
        regression_diff - 0.5 / sigma_squared
    )

    normalizer = tf.stop_gradient(tf.where(tf.equal(anchor_state, 1)))
    normalizer = tf.cast(tf.shape(normalizer)[0], tf.float32)
    normalizer = tf.maximum(1.0, normalizer)

    # normalizer = tf.stop_gradient(tf.cast(tf.equal(anchor_state, 1), tf.float32))
    # normalizer = tf.maximum(tf.reduce_sum(normalizer), 1)

    return tf.reduce_sum(regression_loss) / normalizer 
開發者ID:DetectionTeamUCAS,項目名稱:RetinaNet_Tensorflow_Rotation,代碼行數:34,代碼來源:losses.py

示例10: testFloatBasic

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testFloatBasic(self):
    x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32)
    y = (x + .5).astype(np.float32)     # no zero
    z = (x + 15.5).astype(np.float32)   # all positive
    k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1

    self._compareBoth(x, np.abs, tf.abs)
    self._compareBoth(x, np.abs, _ABS)
    self._compareBoth(x, np.negative, tf.neg)
    self._compareBoth(x, np.negative, _NEG)
    self._compareBoth(y, self._inv, tf.inv)
    self._compareBoth(x, np.square, tf.square)
    self._compareBoth(z, np.sqrt, tf.sqrt)
    self._compareBoth(z, self._rsqrt, tf.rsqrt)
    self._compareBoth(x, np.exp, tf.exp)
    self._compareBoth(z, np.log, tf.log)
    self._compareBoth(z, np.log1p, tf.log1p)
    self._compareBoth(x, np.tanh, tf.tanh)
    self._compareBoth(x, self._sigmoid, tf.sigmoid)
    self._compareBoth(y, np.sign, tf.sign)
    self._compareBoth(x, np.sin, tf.sin)
    self._compareBoth(x, np.cos, tf.cos)
    self._compareBoth(k, np.arcsin, tf.asin)
    self._compareBoth(k, np.arccos, tf.acos)
    self._compareBoth(x, np.arctan, tf.atan)
    self._compareBoth(x, np.tan, tf.tan)
    self._compareBoth(
        y,
        np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
        tf.lgamma)
    self._compareBoth(x, np.vectorize(math.erf), tf.erf)
    self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)

    self._compareBothSparse(x, np.abs, tf.abs)
    self._compareBothSparse(x, np.negative, tf.neg)
    self._compareBothSparse(x, np.square, tf.square)
    self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
    self._compareBothSparse(x, np.tanh, tf.tanh)
    self._compareBothSparse(y, np.sign, tf.sign)
    self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:cwise_ops_test.py

示例11: testFloatEmpty

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testFloatEmpty(self):
    x = np.empty((2, 0, 5), dtype=np.float32)
    self._compareBoth(x, np.abs, tf.abs)
    self._compareBoth(x, np.abs, _ABS)
    self._compareBoth(x, np.negative, tf.neg)
    self._compareBoth(x, np.negative, _NEG)
    self._compareBoth(x, self._inv, tf.inv)
    self._compareBoth(x, np.square, tf.square)
    self._compareBoth(x, np.sqrt, tf.sqrt)
    self._compareBoth(x, self._rsqrt, tf.rsqrt)
    self._compareBoth(x, np.exp, tf.exp)
    self._compareBoth(x, np.log, tf.log)
    self._compareBoth(x, np.log1p, tf.log1p)
    self._compareBoth(x, np.tanh, tf.tanh)
    self._compareBoth(x, self._sigmoid, tf.sigmoid)
    self._compareBoth(x, np.sign, tf.sign)
    self._compareBoth(x, np.sin, tf.sin)
    self._compareBoth(x, np.cos, tf.cos)
    # Can't use vectorize below, so just use some arbitrary function
    self._compareBoth(x, np.sign, tf.lgamma)
    self._compareBoth(x, np.sign, tf.erf)
    self._compareBoth(x, np.sign, tf.erfc)
    self._compareBoth(x, np.tan, tf.tan)
    self._compareBoth(x, np.arcsin, tf.asin)
    self._compareBoth(x, np.arccos, tf.acos)
    self._compareBoth(x, np.arctan, tf.atan)

    self._compareBothSparse(x, np.abs, tf.abs)
    self._compareBothSparse(x, np.negative, tf.neg)
    self._compareBothSparse(x, np.square, tf.square)
    self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3)
    self._compareBothSparse(x, np.tanh, tf.tanh)
    self._compareBothSparse(x, np.sign, tf.sign)
    self._compareBothSparse(x, np.sign, tf.erf) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:36,代碼來源:cwise_ops_test.py

示例12: testDoubleBasic

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def testDoubleBasic(self):
    x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64)
    y = (x + .5).astype(np.float64)    # no zero
    z = (x + 15.5).astype(np.float64)  # all positive
    k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1
    self._compareBoth(x, np.abs, tf.abs)
    self._compareBoth(x, np.abs, _ABS)
    self._compareBoth(x, np.negative, tf.neg)
    self._compareBoth(x, np.negative, _NEG)
    self._compareBoth(y, self._inv, tf.inv)
    self._compareBoth(x, np.square, tf.square)
    self._compareBoth(z, np.sqrt, tf.sqrt)
    self._compareBoth(z, self._rsqrt, tf.rsqrt)
    self._compareBoth(x, np.exp, tf.exp)
    self._compareBoth(z, np.log, tf.log)
    self._compareBoth(z, np.log1p, tf.log1p)
    self._compareBoth(x, np.tanh, tf.tanh)
    self._compareBoth(x, self._sigmoid, tf.sigmoid)
    self._compareBoth(y, np.sign, tf.sign)
    self._compareBoth(x, np.sin, tf.sin)
    self._compareBoth(x, np.cos, tf.cos)
    self._compareBoth(
        y,
        np.vectorize(self._replace_domain_error_with_inf(math.lgamma)),
        tf.lgamma)
    self._compareBoth(x, np.vectorize(math.erf), tf.erf)
    self._compareBoth(x, np.vectorize(math.erfc), tf.erfc)
    self._compareBoth(x, np.arctan, tf.atan)
    self._compareBoth(k, np.arcsin, tf.asin)
    self._compareBoth(k, np.arccos, tf.acos)
    self._compareBoth(k, np.tan, tf.tan)

    self._compareBothSparse(x, np.abs, tf.abs)
    self._compareBothSparse(x, np.negative, tf.neg)
    self._compareBothSparse(x, np.square, tf.square)
    self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3)
    self._compareBothSparse(x, np.tanh, tf.tanh)
    self._compareBothSparse(y, np.sign, tf.sign)
    self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:41,代碼來源:cwise_ops_test.py

示例13: atan2

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def atan2(y, x):
    angle = tf.where(tf.greater(x,0.0), tf.atan(y/x), tf.zeros_like(x))
    angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.greater_equal(y,0.0)),
                      tf.atan(y/x) + np.pi, angle)
    angle = tf.where(tf.logical_and(tf.less(x,0.0), tf.less(y,0.0)),
                      tf.atan(y/x) - np.pi, angle)
    angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.greater(y,0.0)),
                      np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x,0.0), tf.less(y,0.0)),
                      -np.pi * tf.ones_like(x), angle)
    angle = tf.where(tf.logical_and(tf.equal(x,0.0),tf.equal(y,0.0)),
                      np.nan * tf.zeros_like(x), angle)
    return angle 
開發者ID:simonmeister,項目名稱:UnFlow,代碼行數:15,代碼來源:flow_util.py

示例14: tf_arctan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def tf_arctan(x):
    return tf.atan(x) 
開發者ID:JaeDukSeo,項目名稱:Only_Numpy_Basic,代碼行數:4,代碼來源:cost2_2.py

示例15: tf_arctan

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import atan [as 別名]
def tf_arctan(x): return tf.atan(x) 
開發者ID:JaeDukSeo,項目名稱:Only_Numpy_Basic,代碼行數:3,代碼來源:2_man_standard_16_16.py


注:本文中的tensorflow.atan方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。