當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assign_sub方法代碼示例

本文整理匯總了Python中tensorflow.assign_sub方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assign_sub方法的具體用法?Python tensorflow.assign_sub怎麽用?Python tensorflow.assign_sub使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assign_sub方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def _apply_dense(self, grad, var):
        lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            # Can't use 1e-8 due to underflow
            eps = 1e-7
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = tf.assign_sub(var, lr_t * g_t)
        return tf.group(*[var_update, m_t, v_t]) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:20,代碼來源:optimizers.py

示例2: _apply_dense

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def _apply_dense(self, grad, var):
        lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)
        beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
        beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
        if var.dtype.base_dtype == tf.float16:
            eps = 1e-7  # Can't use 1e-8 due to underflow -- not sure if it makes a big difference.
        else:
            eps = 1e-8

        v = self.get_slot(var, "v")
        v_t = v.assign(beta1_t * v + (1. - beta1_t) * grad)
        m = self.get_slot(var, "m")
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))
        g_t = v_t / m_t

        var_update = tf.assign_sub(var, lr_t * g_t)
        return tf.group(*[var_update, m_t, v_t]) 
開發者ID:buriburisuri,項目名稱:sugartensor,代碼行數:19,代碼來源:sg_optimize.py

示例3: batchNormalization

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def batchNormalization(opt,input,type):
	with tf.variable_scope("batchNorm"):
		globalMean = tf.get_variable("mean",shape=[input.shape[-1]],dtype=tf.float32,trainable=False,
											initializer=tf.constant_initializer(0.0))
		globalVar = tf.get_variable("var",shape=[input.shape[-1]],dtype=tf.float32,trainable=False,
										  initializer=tf.constant_initializer(1.0))
		if opt.training:
			if type=="conv": batchMean,batchVar = tf.nn.moments(input,axes=[0,1,2])
			elif type=="fc": batchMean,batchVar = tf.nn.moments(input,axes=[0])
			trainMean = tf.assign_sub(globalMean,(1-opt.BNdecay)*(globalMean-batchMean))
			trainVar = tf.assign_sub(globalVar,(1-opt.BNdecay)*(globalVar-batchVar))
			with tf.control_dependencies([trainMean,trainVar]):
				output = tf.nn.batch_normalization(input,batchMean,batchVar,None,None,opt.BNepsilon)
		else: output = tf.nn.batch_normalization(input,globalMean,globalVar,None,None,opt.BNepsilon)
	return output

# L1 loss 
開發者ID:chenhsuanlin,項目名稱:3D-point-cloud-generation,代碼行數:19,代碼來源:graph.py

示例4: batch_norm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
    shape = x.get_shape().as_list()
    with tf.variable_scope(name):
        beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
        gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
        pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
        pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)

        if pop_mean not in tf.moving_average_variables():
            tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean)
            tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var)

        def func1():
            # Execute at training time
            batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
            update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
            update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
            with tf.control_dependencies([update_mean, update_var]):
                return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon)

        def func2():
            # Execute at test time
            return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon)

        return tf.cond(train, func1, func2) 
開發者ID:maxorange,項目名稱:pix2vox,代碼行數:27,代碼來源:ops.py

示例5: apply_updates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def apply_updates(self, model, grads):
        """
        Updates the model parameters based on the given gradients, using momentum
        """
        update_ops = []
        mom_ops = []
        
        if isinstance(self._learning_rate, list):
            lrs = self._learning_rate
            print('d')
        else:
            lrs = [self._learning_rate for p in model.model_params]

        with tf.name_scope('CDLearning/updates'):
            for param, grad, mv, lr in zip(model.model_params, grads, self._momentum_vector, lrs):
                mv = tf.assign(mv, self._momentum * mv + grad * lr)
                update_ops.append(tf.assign_sub(param, mv))
                
        return update_ops, mom_ops 
開發者ID:omimo,項目名稱:xRBM,代碼行數:21,代碼來源:cdk.py

示例6: batch_norm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
    shape = x.get_shape().as_list()
    with tf.variable_scope(name):
        beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
        gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
        pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
        pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)

        if pop_mean not in tf.moving_average_variables():
            tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean)
            tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var)

        def func1():
            # execute at training time
            batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
            update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
            update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
            with tf.control_dependencies([update_mean, update_var]):
                return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon)

        def func2():
            # execute at test time
            return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon)

        return tf.cond(train, func1, func2) 
開發者ID:maxorange,項目名稱:voxel-dcgan,代碼行數:27,代碼來源:ops.py

示例7: build_trainer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def build_trainer(self, child_model):
    # actor
    self.valid_loss = tf.to_float(child_model.rl_loss)
    self.valid_loss = tf.stop_gradient(self.valid_loss)
    self.valid_ppl = tf.exp(self.valid_loss)
    self.reward = 80.0 / self.valid_ppl

    if self.entropy_weight is not None:
      self.reward += self.entropy_weight * self.sample_entropy

    # or baseline
    self.sample_log_probs = tf.reduce_sum(self.sample_log_probs)
    self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False)
    baseline_update = tf.assign_sub(
      self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward))

    with tf.control_dependencies([baseline_update]):
      self.reward = tf.identity(self.reward)
    self.loss = self.sample_log_probs * (self.reward - self.baseline)

    self.train_step = tf.Variable(
        0, dtype=tf.int32, trainable=False, name="train_step")
    tf_variables = [var
        for var in tf.trainable_variables() if var.name.startswith(self.name)]

    self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
      self.loss,
      tf_variables,
      self.train_step,
      clip_mode=self.clip_mode,
      grad_bound=self.grad_bound,
      l2_reg=self.l2_reg,
      lr_init=self.lr_init,
      lr_dec_start=self.lr_dec_start,
      lr_dec_every=self.lr_dec_every,
      lr_dec_rate=self.lr_dec_rate,
      optim_algo=self.optim_algo,
      sync_replicas=self.sync_replicas,
      num_aggregate=self.num_aggregate,
      num_replicas=self.num_replicas) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:42,代碼來源:ptb_enas_controller.py

示例8: minimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def minimize(self, loss, variables=None):
    """"""
    
    variables = variables or tf.trainable_variables()
    gradients = tf.gradients(loss, variables,
                             colocate_gradients_with_ops=True,
                             gate_gradients=True,
                             aggregation_method=2)
    gradients = {variable: gradient for variable, gradient in zip(variables, gradients) if gradient is not None}
    
    variable_steps = {}
    variable_indices = {}
    updates = [tf.assign_add(self.global_step, 1)]
    for variable, gradient in six.iteritems(gradients):
      if isinstance(gradient, tf.Tensor):
        step, update = self.dense_update(gradient, variable)
        variable_steps[variable] = step
        updates.extend(update)
      else:
        step, indices, update = self.sparse_update(gradient, variable)
        variable_steps[variable] = step
        variable_indices[variable] = indices
        updates.extend(update)
    
    variable_steps = self.clip_by_global_norm(variable_steps)
    
    for variable, step in six.iteritems(variable_steps):
      if variable in variable_indices:
        indices = variable_indices[variable]
        updates.append(tf.scatter_sub(variable, indices, step))
      else:
        updates.append(tf.assign_sub(variable, step))
    
    return tf.tuple(updates)[0]
  
  #============================================================= 
開發者ID:tdozat,項目名稱:Parser-v3,代碼行數:38,代碼來源:optimizer.py

示例9: update_sub

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def update_sub(x, decrement):
    """Update the value of `x` by subtracting `decrement`.

    # Arguments
        x: A `Variable`.
        decrement: A tensor of same shape as `x`.

    # Returns
        The variable `x` updated.
    """
    return tf.assign_sub(x, decrement) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:tensorflow_backend.py

示例10: testAssignUpdate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def testAssignUpdate(self):
    var = state_ops.variable_op([1, 2], tf.float32)
    added = tf.assign_add(var, [[2.0, 3.0]])
    self.assertEqual([1, 2], added.get_shape())
    subbed = tf.assign_sub(var, [[12.0, 13.0]])
    self.assertEqual([1, 2], subbed.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:variable_ops_test.py

示例11: testAssignUpdateNoVarShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def testAssignUpdateNoVarShape(self):
    var = state_ops.variable_op([1, 2], tf.float32, set_shape=False)
    added = tf.assign_add(var, [[2.0, 3.0]])
    self.assertEqual([1, 2], added.get_shape())
    subbed = tf.assign_sub(var, [[12.0, 13.0]])
    self.assertEqual([1, 2], subbed.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:variable_ops_test.py

示例12: testAssignUpdateNoValueShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def testAssignUpdateNoValueShape(self):
    var = state_ops.variable_op([1, 2], tf.float32)
    added = tf.assign_add(var, self._NewShapelessTensor())
    self.assertEqual([1, 2], added.get_shape())
    subbed = tf.assign_sub(var, self._NewShapelessTensor())
    self.assertEqual([1, 2], subbed.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:variable_ops_test.py

示例13: testAssignUpdateNoShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def testAssignUpdateNoShape(self):
    var = state_ops.variable_op([1, 2], tf.float32, set_shape=False)
    added = tf.assign_add(var, self._NewShapelessTensor())
    self.assertEqual(tensor_shape.unknown_shape(), added.get_shape())
    subbed = tf.assign_sub(var, self._NewShapelessTensor())
    self.assertEqual(tensor_shape.unknown_shape(), subbed.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:variable_ops_test.py

示例14: _initAssignSubFetch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def _initAssignSubFetch(self, x, y, use_gpu=False):
    """Initialize a param to init, and compute param -= y."""
    with self.test_session(use_gpu=use_gpu):
      p = tf.Variable(x)
      sub = tf.assign_sub(p, y)
      p.initializer.run()
      new_value = sub.eval()
      return p.eval(), new_value 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:dense_update_ops_test.py

示例15: _make_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign_sub [as 別名]
def _make_train_op(self, item_logits, item_idxs, scores):
        batch_size = self._batch_size
        base_decay = 0.99
        learning_rate = 0.0035
        adam_beta1 = 0
        adam_epsilon = 1e-3
        entropy_weight = 0.0001

        # Compute log probs & entropy
        sample_log_probs = self._compute_sample_log_probs(item_idxs, item_logits)
        sample_entropy = self._compute_sample_entropy(item_logits)

        # Compute rewards in a batch
        # Adding entropy encourages exploration
        rewards = scores
        rewards += entropy_weight * sample_entropy

        # Baseline reward for REINFORCE
        reward_base = tf.Variable(0., name='reward_base', dtype=tf.float32, trainable=False)

        # Update baseline whenever reward updates
        base_update = tf.assign_sub(reward_base, (1 - base_decay) * (reward_base - tf.reduce_mean(rewards)))
        with tf.control_dependencies([base_update]):
            rewards = tf.identity(rewards)

        # Compute losses in a batch
        losses = sample_log_probs * (rewards - reward_base)

        # Add optimizer
        tf_vars = self._get_all_variables()
        steps = tf.Variable(0, name='steps', dtype=tf.int32, trainable=False)
        grads = tf.gradients(losses, tf_vars)
        grads = [x / tf.constant(batch_size, dtype=tf.float32) for x in grads] # Average all gradients
        opt = tf.train.AdamOptimizer(learning_rate, beta1=adam_beta1, epsilon=adam_epsilon,
                                    use_locking=True)
        train_op = opt.apply_gradients(zip(grads, tf_vars), global_step=steps)
        
        return (train_op, losses, rewards) 
開發者ID:nginyc,項目名稱:rafiki,代碼行數:40,代碼來源:tf.py


注:本文中的tensorflow.assign_sub方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。