當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assign方法代碼示例

本文整理匯總了Python中tensorflow.assign方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assign方法的具體用法?Python tensorflow.assign怎麽用?Python tensorflow.assign使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assign方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_uninited_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def init_uninited_vars(vars=None):
    if vars is None: vars = tf.global_variables()
    test_vars = []; test_ops = []
    with tf.control_dependencies(None): # ignore surrounding control_dependencies
        for var in vars:
            assert is_tf_expression(var)
            try:
                tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/IsVariableInitialized:0'))
            except KeyError:
                # Op does not exist => variable may be uninitialized.
                test_vars.append(var)
                with absolute_name_scope(var.name.split(':')[0]):
                    test_ops.append(tf.is_variable_initialized(var))
    init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
    run([var.initializer for var in init_vars])

#----------------------------------------------------------------------------
# Set the values of given tf.Variables.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tfutil.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:22,代碼來源:tfutil.py

示例2: finalize_autosummaries

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def finalize_autosummaries():
    global _autosummary_finalized
    if _autosummary_finalized:
        return
    _autosummary_finalized = True
    init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
    with tf.device(None), tf.control_dependencies(None):
        for name, vars in _autosummary_vars.items():
            id = name.replace('/', '_')
            with absolute_name_scope('Autosummary/' + id):
                sum = tf.add_n(vars)
                avg = sum[0] / sum[1]
                with tf.control_dependencies([avg]): # read before resetting
                    reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
                    with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
                        tf.summary.scalar(name, avg)

# Internal helper for creating autosummary accumulators. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:20,代碼來源:tfutil.py

示例3: _create_autosummary_var

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def _create_autosummary_var(name, value_expr):
    assert not _autosummary_finalized
    v = tf.cast(value_expr, tf.float32)
    if v.shape.ndims is 0:
        v = [v, np.float32(1.0)]
    elif v.shape.ndims is 1:
        v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
    else:
        v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
    v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
    with tf.control_dependencies(None):
        var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
    update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
    if name in _autosummary_vars:
        _autosummary_vars[name].append(var)
    else:
        _autosummary_vars[name] = [var]
    return update_op

#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:24,代碼來源:tfutil.py

示例4: simulate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def simulate(self, action):

    # There is subtlety here. We need to collect data
    # obs, action = policy(obs), done, reward = env(abs, action)
    # Thus we need to enqueue data before assigning new observation

    reward, done = self._batch_env.simulate(action)

    with tf.control_dependencies([reward, done]):
      enqueue_op = self.speculum.enqueue(
          [self._observ.read_value(), reward, done, action])

    with tf.control_dependencies([enqueue_op]):
      assign = self._observ.assign(self._batch_env.observ)

    with tf.control_dependencies([assign]):
      return tf.identity(reward), tf.identity(done) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:collect.py

示例5: setup_popart

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def setup_popart(self):
        # See https://arxiv.org/pdf/1602.07714.pdf for details.
        self.old_std = tf.placeholder(tf.float32, shape=[1], name='old_std')
        new_std = self.ret_rms.std
        self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean')
        new_mean = self.ret_rms.mean

        self.renormalize_Q_outputs_op = []
        for vs in [self.critic.output_vars, self.target_critic.output_vars]:
            assert len(vs) == 2
            M, b = vs
            assert 'kernel' in M.name
            assert 'bias' in b.name
            assert M.get_shape()[-1] == 1
            assert b.get_shape()[-1] == 1
            self.renormalize_Q_outputs_op += [M.assign(M * self.old_std / new_std)]
            self.renormalize_Q_outputs_op += [b.assign((b * self.old_std + self.old_mean - new_mean) / new_std)] 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:19,代碼來源:ddpg.py

示例6: get_local_rank_size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def get_local_rank_size(comm):
    """
    Returns the rank of each process on its machine
    The processes on a given machine will be assigned ranks
        0, 1, 2, ..., N-1,
    where N is the number of processes on this machine.

    Useful if you want to assign one gpu per machine
    """
    this_node = platform.node()
    ranks_nodes = comm.allgather((comm.Get_rank(), this_node))
    node2rankssofar = defaultdict(int)
    local_rank = None
    for (rank, node) in ranks_nodes:
        if rank == comm.Get_rank():
            local_rank = node2rankssofar[node]
        node2rankssofar[node] += 1
    assert local_rank is not None
    return local_rank, node2rankssofar[this_node] 
開發者ID:MaxSobolMark,項目名稱:HardRLWithYoutube,代碼行數:21,代碼來源:mpi_util.py

示例7: get_checkpoint_init_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def get_checkpoint_init_fn():
  """Returns the checkpoint init_fn if the checkpoint is provided."""
  if FLAGS.fine_tune_checkpoint:
    variables_to_restore = slim.get_variables_to_restore()
    global_step_reset = tf.assign(tf.train.get_or_create_global_step(), 0)
    # When restoring from a floating point model, the min/max values for
    # quantized weights and activations are not present.
    # We instruct slim to ignore variables that are missing during restoration
    # by setting ignore_missing_vars=True
    slim_init_fn = slim.assign_from_checkpoint_fn(
        FLAGS.fine_tune_checkpoint,
        variables_to_restore,
        ignore_missing_vars=True)

    def init_fn(sess):
      slim_init_fn(sess)
      # If we are restoring from a floating point model, we need to initialize
      # the global step to zero for the exponential decay to result in
      # reasonable learning rates.
      sess.run(global_step_reset)
    return init_fn
  else:
    return None 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:25,代碼來源:mobilenet_v1_train.py

示例8: set_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def set_variables(self, var_dict):
        """
        Set the model's variables to those provided in var_dict. This is e.g. used to restore the best seen parameters
        after training with patience.

        Parameters
        ----------
        var_dict: dict
            Dictionary of the form {var_name: var_value} to assign the variables in the model.

        Returns
        -------
        None.
        """

        with self.graph.as_default():
            if not hasattr(self, 'assign_placeholders'):
                self.assign_placeholders = {v.name: tf.placeholder(v.dtype, shape=v.get_shape()) for v in self.varlist}
                self.assign_ops = {v.name: tf.assign(v, self.assign_placeholders[v.name])
                                   for v in self.varlist}
            to_namespace = list(var_dict.keys())[0].split("/")[0]
            self.session.run(list(self.assign_ops.values()), feed_dict = {val: var_dict[self.convert_varname(key, to_namespace)]
                                                                     for key, val in self.assign_placeholders.items()}) 
開發者ID:danielzuegner,項目名稱:nettack,代碼行數:25,代碼來源:GCN.py

示例9: load_batch_norm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def load_batch_norm(idx, variables, weights, assign_ops, offset):
  """Loads kernel, gamma, beta, mean, variance for Batch Normalization"""
  kernel = variables[idx]
  gamma, beta, mean, variance = variables[idx + 1:idx + 5]
  batch_norm_vars = [beta, gamma, mean, variance]

  for var in batch_norm_vars:
    shape = var.shape.as_list()
    num_params = np.prod(shape)
    var_weights = weights[offset:offset + num_params].reshape(shape)
    offset += num_params
    assign_ops.append(tf.assign(var, var_weights))

  shape = kernel.shape.as_list()
  num_params = np.prod(shape)
  var_weights = weights[offset:offset + num_params].reshape((shape[3], shape[2], shape[0], shape[1]))
  var_weights = np.transpose(var_weights, (2, 3, 1, 0))
  offset += num_params
  assign_ops.append(tf.assign(kernel, var_weights))
  return assign_ops, offset 
開發者ID:kcosta42,項目名稱:Tensorflow-YOLOv3,代碼行數:22,代碼來源:convert_weights.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def __init__(self, *args, **kwargs):
        self.args, self.kwargs = args, kwargs
        self.scope = self._initialize(*args, **kwargs)
        self.all_variables = tf.get_collection(tf.GraphKeys.VARIABLES, self.scope.name)

        self.trainable_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope.name)
        self.num_params = sum(int(np.prod(v.get_shape().as_list())) for v in self.trainable_variables)
        self._setfromflat = U.SetFromFlat(self.trainable_variables)
        self._getflat = U.GetFlat(self.trainable_variables)

        logger.info('Trainable variables ({} parameters)'.format(self.num_params))
        for v in self.trainable_variables:
            shp = v.get_shape().as_list()
            logger.info('- {} shape:{} size:{}'.format(v.name, shp, np.prod(shp)))
        logger.info('All variables')
        for v in self.all_variables:
            shp = v.get_shape().as_list()
            logger.info('- {} shape:{} size:{}'.format(v.name, shp, np.prod(shp)))

        placeholders = [tf.placeholder(v.value().dtype, v.get_shape().as_list()) for v in self.all_variables]
        self.set_all_vars = U.function(
            inputs=placeholders,
            outputs=[],
            updates=[tf.group(*[v.assign(p) for v, p in zip(self.all_variables, placeholders)])]
        ) 
開發者ID:openai,項目名稱:evolution-strategies-starter,代碼行數:27,代碼來源:policies.py

示例11: sync_from_root

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def sync_from_root(sess, variables, comm=None):
    """
    Send the root node's parameters to every worker.
    Arguments:
      sess: the TensorFlow session.
      variables: all parameter variables including optimizer's
    """
    if comm is None: comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    for var in variables:
        if rank == 0:
            comm.Bcast(sess.run(var))
        else:
            import tensorflow as tf
            returned_var = np.empty(var.shape, dtype='float32')
            comm.Bcast(returned_var)
            sess.run(tf.assign(var, returned_var)) 
開發者ID:quantumiracle,項目名稱:Reinforcement_Learning_for_Traffic_Light_Control,代碼行數:19,代碼來源:mpi_util.py

示例12: load_old_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def load_old_graph(self, ckpt): 
    ckpt_loader = create_loader(ckpt)
    self.say(old_graph_msg.format(ckpt))
    
    for var in tf.global_variables():
        name = var.name.split(':')[0]
        args = [name, var.get_shape()]
        val = ckpt_loader(args)
        assert val is not None, \
        'Cannot find and load {}'.format(var.name)
        shp = val.shape
        plh = tf.placeholder(tf.float32, shp)
        op = tf.assign(var, plh)
        self.sess.run(op, {plh: val}) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:16,代碼來源:help.py

示例13: set_vars

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def set_vars(var_to_value_dict):
    ops = []
    feed_dict = {}
    for var, value in var_to_value_dict.items():
        assert is_tf_expression(var)
        try:
            setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/setter:0')) # look for existing op
        except KeyError:
            with absolute_name_scope(var.name.split(':')[0]):
                with tf.control_dependencies(None): # ignore surrounding control_dependencies
                    setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, 'new_value'), name='setter') # create new setter
        ops.append(setter)
        feed_dict[setter.op.inputs[1]] = value
    run(ops, feed_dict)

#----------------------------------------------------------------------------
# Autosummary creates an identity op that internally keeps track of the input
# values and automatically shows up in TensorBoard. The reported value
# represents an average over input components. The average is accumulated
# constantly over time and flushed when save_summaries() is called.
#
# Notes:
# - The output tensor must be used as an input for something else in the
#   graph. Otherwise, the autosummary op will not get executed, and the average
#   value will not get accumulated.
# - It is perfectly fine to include autosummaries with the same name in
#   several places throughout the graph, even if they are executed concurrently.
# - It is ok to also pass in a python scalar or numpy array. In this case, it
#   is added to the average immediately. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:31,代碼來源:tfutil.py

示例14: setup_as_moving_average_of

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def setup_as_moving_average_of(self, src_net, beta=0.99, beta_nontrainable=0.0):
        assert isinstance(src_net, Network)
        with absolute_name_scope(self.scope):
            with tf.name_scope('MovingAvg'):
                ops = []
                for name, var in self.vars.items():
                    if name in src_net.vars:
                        cur_beta = beta if name in self.trainables else beta_nontrainable
                        new_value = lerp(src_net.vars[name], var, cur_beta)
                        ops.append(var.assign(new_value))
                return tf.group(*ops)

    # Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s). 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:15,代碼來源:tfutil.py

示例15: create_sync_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assign [as 別名]
def create_sync_ops(self, host_device):
        """Create an assignment operation for each weight on all devices. The
        weight is assigned the value of the copy on the `host_device'.
        """
        sync_ops = []
        host_params = self.params_device[host_device]
        for device, params in (self.params_device).iteritems():
            if device == host_device:
                continue
            for k in self.params_names:
                if isinstance(params[k], tf.Variable):
                    sync_ops += [tf.assign(params[k], host_params[k])]
        return sync_ops 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:15,代碼來源:model.py


注:本文中的tensorflow.assign方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。