本文整理匯總了Python中tensorflow.assert_type方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_type方法的具體用法?Python tensorflow.assert_type怎麽用?Python tensorflow.assert_type使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.assert_type方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: accumulate_strings
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_type [as 別名]
def accumulate_strings(values, name="strings"):
"""Accumulates strings into a vector.
Args:
values: A 1-d string tensor that contains values to add to the accumulator.
Returns:
A tuple (value_tensor, update_op).
"""
tf.assert_type(values, tf.string)
strings = tf.Variable(
name=name,
initial_value=[],
dtype=tf.string,
trainable=False,
collections=[],
validate_shape=True)
value_tensor = tf.identity(strings)
update_op = tf.assign(
ref=strings, value=tf.concat([strings, values], 0), validate_shape=False)
return value_tensor, update_op
開發者ID:akanimax,項目名稱:natural-language-summary-generation-from-structured-data,代碼行數:23,代碼來源:metric_specs.py
示例2: op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_type [as 別名]
def op(name,
data,
display_name=None,
description=None,
collections=None):
"""Create a text summary op.
Text data summarized via this plugin will be visible in the Text Dashboard
in TensorBoard. The standard TensorBoard Text Dashboard will render markdown
in the strings, and will automatically organize 1D and 2D tensors into tables.
If a tensor with more than 2 dimensions is provided, a 2D subarray will be
displayed along with a warning message. (Note that this behavior is not
intrinsic to the text summary API, but rather to the default TensorBoard text
plugin.)
Args:
name: A name for the generated node. Will also serve as a series name in
TensorBoard.
data: A string-type Tensor to summarize. The text must be encoded in UTF-8.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of ops.GraphKeys. The collections to which to add
the summary. Defaults to [Graph Keys.SUMMARIES].
Returns:
A TensorSummary op that is configured so that TensorBoard will recognize
that it contains textual data. The TensorSummary is a scalar `Tensor` of
type `string` which contains `Summary` protobufs.
Raises:
ValueError: If tensor has the wrong type.
"""
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description)
with tf.name_scope(name):
with tf.control_dependencies([tf.assert_type(data, tf.string)]):
return tf.summary.tensor_summary(name='text_summary',
tensor=data,
collections=collections,
summary_metadata=summary_metadata)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:46,代碼來源:summary.py
示例3: _buckets
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_type [as 別名]
def _buckets(data, bucket_count=None):
"""Create a TensorFlow op to group data into histogram buckets.
Arguments:
data: A `Tensor` of any shape. Must be castable to `float64`.
bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
Returns:
A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
a triple `[left_edge, right_edge, count]` for a single bucket.
The value of `k` is either `bucket_count` or `1` or `0`.
"""
if bucket_count is None:
bucket_count = DEFAULT_BUCKET_COUNT
with tf.name_scope('buckets', values=[data, bucket_count]), \
tf.control_dependencies([tf.assert_scalar(bucket_count),
tf.assert_type(bucket_count, tf.int32)]):
data = tf.reshape(data, shape=[-1]) # flatten
data = tf.cast(data, tf.float64)
is_empty = tf.equal(tf.size(data), 0)
def when_empty():
return tf.constant([], shape=(0, 3), dtype=tf.float64)
def when_nonempty():
min_ = tf.reduce_min(data)
max_ = tf.reduce_max(data)
range_ = max_ - min_
is_singular = tf.equal(range_, 0)
def when_nonsingular():
bucket_width = range_ / tf.cast(bucket_count, tf.float64)
offsets = data - min_
bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
dtype=tf.int32)
clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
bucket_counts = tf.cast(tf.reduce_sum(one_hots, axis=0),
dtype=tf.float64)
edges = tf.lin_space(min_, max_, bucket_count + 1)
left_edges = edges[:-1]
right_edges = edges[1:]
return tf.transpose(tf.stack(
[left_edges, right_edges, bucket_counts]))
def when_singular():
center = min_
bucket_starts = tf.stack([center - 0.5])
bucket_ends = tf.stack([center + 0.5])
bucket_counts = tf.stack([tf.cast(tf.size(data), tf.float64)])
return tf.transpose(
tf.stack([bucket_starts, bucket_ends, bucket_counts]))
return tf.cond(is_singular, when_singular, when_nonsingular)
return tf.cond(is_empty, when_empty, when_nonempty)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:57,代碼來源:summary.py
示例4: op
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_type [as 別名]
def op(name,
images,
max_outputs=3,
display_name=None,
description=None,
collections=None):
"""Create an image summary op for use in a TensorFlow graph.
Arguments:
name: A unique name for the generated summary node.
images: A `Tensor` representing pixel data with shape `[k, w, h, c]`,
where `k` is the number of images, `w` and `h` are the width and
height of the images, and `c` is the number of channels, which
should be 1, 3, or 4. Any of the dimensions may be statically
unknown (i.e., `None`).
max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
many images will be emitted at each step. When more than
`max_outputs` many images are provided, the first `max_outputs` many
images will be used and the rest silently discarded.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A TensorFlow summary op.
"""
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description)
with tf.name_scope(name), \
tf.control_dependencies([tf.assert_rank(images, 4),
tf.assert_type(images, tf.uint8),
tf.assert_non_negative(max_outputs)]):
limited_images = images[:max_outputs]
encoded_images = tf.map_fn(tf.image.encode_png, limited_images,
dtype=tf.string,
name='encode_each_image')
image_shape = tf.shape(images)
dimensions = tf.stack([tf.as_string(image_shape[1], name='width'),
tf.as_string(image_shape[2], name='height')],
name='dimensions')
tensor = tf.concat([dimensions, encoded_images], axis=0)
return tf.summary.tensor_summary(name='image_summary',
tensor=tensor,
collections=collections,
summary_metadata=summary_metadata)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:53,代碼來源:summary.py