當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assert_positive方法代碼示例

本文整理匯總了Python中tensorflow.assert_positive方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_positive方法的具體用法?Python tensorflow.assert_positive怎麽用?Python tensorflow.assert_positive使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_positive方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_pi_tracenorm

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def compute_pi_tracenorm(left_cov, right_cov):
  """Computes the scalar constant pi for Tikhonov regularization/damping.

  pi = sqrt( (trace(A) / dim(A)) / (trace(B) / dim(B)) )
  See section 6.3 of https://arxiv.org/pdf/1503.05671.pdf for details.

  Args:
    left_cov: A LinearOperator object. The left Kronecker factor "covariance".
    right_cov: A LinearOperator object. The right Kronecker factor "covariance".

  Returns:
    The computed scalar constant pi for these Kronecker Factors (as a Tensor).
  """
  # Instead of dividing by the dim of the norm, we multiply by the dim of the
  # other norm. This works out the same in the ratio.
  left_norm = left_cov.trace() * int(right_cov.domain_dimension)
  right_norm = right_cov.trace() * int(left_cov.domain_dimension)
  assert_positive = tf.assert_positive(
      right_norm,
      message="PI computation, trace of right cov matrix should be positive. "
      "Note that most likely cause of this error is that the optimizer "
      "diverged (e.g. due to bad hyperparameters).")
  with tf.control_dependencies([assert_positive]):
    pi = tf.sqrt(left_norm / right_norm)
  return pi 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:27,代碼來源:fisher_blocks.py

示例2: build_cross_entropy_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def build_cross_entropy_loss(logits, gold):
  """Constructs a cross entropy from logits and one-hot encoded gold labels.

  Supports skipping rows where the gold label is the magic -1 value.

  Args:
    logits: float Tensor of scores.
    gold: int Tensor of one-hot labels.

  Returns:
    cost, correct, total: the total cost, the total number of correctly
        predicted labels, and the total number of valid labels.
  """
  valid = tf.reshape(tf.where(tf.greater(gold, -1)), [-1])
  gold = tf.gather(gold, valid)
  logits = tf.gather(logits, valid)
  correct = tf.reduce_sum(tf.to_int32(tf.nn.in_top_k(logits, gold, 1)))
  total = tf.size(gold)
  with tf.control_dependencies([tf.assert_positive(total)]):
    cost = tf.reduce_sum(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=tf.cast(gold, tf.int64), logits=logits)) / tf.cast(
                total, tf.float32)
  return cost, correct, total 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:26,代碼來源:bulk_component.py

示例3: build_cross_entropy_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def build_cross_entropy_loss(logits, gold):
  """Constructs a cross entropy from logits and one-hot encoded gold labels.

  Supports skipping rows where the gold label is the magic -1 value.

  Args:
    logits: float Tensor of scores.
    gold: int Tensor of gold label ids.

  Returns:
    cost, correct, total: the total cost, the total number of correctly
        predicted labels, and the total number of valid labels.
  """
  valid = tf.reshape(tf.where(tf.greater(gold, -1)), [-1])
  gold = tf.gather(gold, valid)
  logits = tf.gather(logits, valid)
  correct = tf.reduce_sum(tf.to_int32(tf.nn.in_top_k(logits, gold, 1)))
  total = tf.size(gold)
  with tf.control_dependencies([tf.assert_positive(total)]):
    cost = tf.reduce_sum(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=tf.cast(gold, tf.int64), logits=logits)) / tf.cast(
                total, tf.float32)
  return cost, correct, total 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:26,代碼來源:bulk_component.py

示例4: ptb_producer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def ptb_producer(raw_data, batch_size, num_steps, name=None):
    """Iterate on the raw PTB data.
    This chunks up raw_data into batches of examples and returns Tensors that
    are drawn from these batches.
    Args:
      raw_data: one of the raw data outputs from ptb_raw_data.
      batch_size: int, the batch size.
      num_steps: int, the number of unrolls.
      name: the name of this operation (optional).
    Returns:
      A pair of Tensors, each shaped [batch_size, num_steps]. The second element
      of the tuple is the same data time-shifted to the right by one.
    Raises:
      tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
    """
    with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
        raw_data = tf.convert_to_tensor(
            raw_data, name="raw_data", dtype=tf.int32)

        data_len = tf.size(raw_data)
        batch_len = data_len // batch_size
        data = tf.reshape(raw_data[0: batch_size * batch_len],
                          [batch_size, batch_len])

        epoch_size = (batch_len - 1) // num_steps
        assertion = tf.assert_positive(
            epoch_size,
            message="epoch_size == 0, decrease batch_size or num_steps")
        with tf.control_dependencies([assertion]):
            epoch_size = tf.identity(epoch_size, name="epoch_size")

        i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
        x = tf.strided_slice(data, [0, i * num_steps],
                             [batch_size, (i + 1) * num_steps])
        x.set_shape([batch_size, num_steps])
        y = tf.strided_slice(data, [0, i * num_steps + 1],
                             [batch_size, (i + 1) * num_steps + 1])
        y.set_shape([batch_size, num_steps])
        return x, y 
開發者ID:qinyao-he,項目名稱:bit-rnn,代碼行數:41,代碼來源:reader.py

示例5: Kdiag

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def Kdiag(self, X, presliced=False):
        kdiag = 1e-4  # some jitter
        for variances in self.variances:
            kdiag += tf.square(self._interpolate(X, variances, self.Kvar, transform=tf.nn.softplus))
        with tf.control_dependencies([tf.assert_positive(kdiag, message='Kdiag negative: ')]):
            # kdiag = tf.Print(kdiag, [kdiag], 'kdiag: ')
            kdiag = tf.identity(kdiag)
        return tf.squeeze(kdiag) 
開發者ID:sremes,項目名稱:nssm-gp,代碼行數:10,代碼來源:spectral_svgp.py

示例6: _build_likelihood

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def _build_likelihood(self):
        """
        This gives a variational bound on the model likelihood.
        Adds also the prior term for the GP parameters.
        """

        # Get prior KL.
        KL = self.build_prior_KL()

        # Get conditionals
        fmean, fvar = self._build_predict(self.X, full_cov=False)

        #with tf.control_dependencies([tf.assert_positive(fvar, message='fvar negative: ')]):
        #    # Get variational expectations.
        var_exp = self.likelihood.variational_expectations(fmean, fvar, self.Y)

        # re-scale var_exp for minibatch size
        scale = (tf.cast(self.num_data, settings.tf_float)
                 / tf.cast(tf.shape(self.X)[0], settings.tf_float))
        var_exp = tf.reduce_sum(var_exp) * scale

        # latent functions have a whitened GP prior
        prior = float_type(0.0)
        for vars in zip(self.frequencies, self.variances, self.lengthscales):
            prior += -0.5 * sum(tf.reduce_sum(tf.square(x)) for x in vars)

        # re-scale prior for inducing point size
        # scale = tf.cast(self.num_data, settings.tf_float) / tf.cast(self.num_inducing, settings.tf_float)
        # prior = prior * scale

        # print tensors
        #var_exp = tf.Print(var_exp, [var_exp], message='var_exp:')
        #KL = tf.Print(KL, [KL], message='KL:')
        #prior = tf.Print(prior, [prior], message='prior:')
        likelihood = var_exp - KL + prior
        likelihood = tf.Print(likelihood, [likelihood], 'likelihood')
        return likelihood 
開發者ID:sremes,項目名稱:nssm-gp,代碼行數:39,代碼來源:spectral_svgp.py

示例7: test_raises_when_negative

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def test_raises_when_negative(self):
    with self.test_session():
      freddie = tf.constant([-1, -2], name="freddie")
      with tf.control_dependencies(
          [tf.assert_positive(freddie, message="fail")]):
        out = tf.identity(freddie)
      with self.assertRaisesOpError("fail.*freddie"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:check_ops_test.py

示例8: test_doesnt_raise_when_positive

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def test_doesnt_raise_when_positive(self):
    with self.test_session():
      remmy = tf.constant([1, 2], name="remmy")
      with tf.control_dependencies([tf.assert_positive(remmy)]):
        out = tf.identity(remmy)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:check_ops_test.py

示例9: test_raises_when_zero

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def test_raises_when_zero(self):
    with self.test_session():
      meechum = tf.constant([0], name="meechum")
      with tf.control_dependencies([tf.assert_positive(meechum)]):
        out = tf.identity(meechum)
      with self.assertRaisesOpError("meechum"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例10: test_empty_tensor_doesnt_raise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def test_empty_tensor_doesnt_raise(self):
    # A tensor is positive when it satisfies:
    #   For every element x_i in x, x_i > 0
    # and an empty tensor has no elements, so this is trivially satisfied.
    # This is standard set theory.
    with self.test_session():
      empty = tf.constant([], name="empty")
      with tf.control_dependencies([tf.assert_positive(empty)]):
        out = tf.identity(empty)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:check_ops_test.py

示例11: ptb_producer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.

  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).

  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.

  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.slice(data, [0, i * num_steps], [batch_size, num_steps])
    y = tf.slice(data, [0, i * num_steps + 1], [batch_size, num_steps])
    return x, y 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:reader.py

示例12: check_3d_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def check_3d_image(image, require_static=True):
  """Assert that we are working with properly shaped image.

  Args:
    image: 3-D Tensor of shape [height, width, channels]
    require_static: If `True`, requires that all dimensions of `image` are
      known and non-zero.

  Raises:
    ValueError: if `image.shape` is not a 3-vector.

  Returns:
    An empty list, if `image` has fully defined dimensions. Otherwise, a list
    containing an assert op is returned.
  """
  try:
    image_shape = image.get_shape().with_rank(3)
  except ValueError:
    raise ValueError("'image' must be three-dimensional.")
  if require_static and not image_shape.is_fully_defined():
    raise ValueError("'image' must be fully defined.")
  if any(x == 0 for x in image_shape):
    raise ValueError("all dims of 'image.shape' must be > 0: %s" %
                     image_shape)
  if not image_shape.is_fully_defined():
    return [tf.assert_positive(tf.shape(image),
                                      ["all dims of 'image.shape' "
                                       "must be > 0."])]
  else:
    return [] 
開發者ID:Zehaos,項目名稱:MobileNet,代碼行數:32,代碼來源:mobilenetdet_preprocessing.py

示例13: reduce_mean

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def reduce_mean(seq_batch, allow_empty=False):
    """Compute the mean of each sequence in a SequenceBatch.

    Args:
        seq_batch (SequenceBatch): a SequenceBatch with the following attributes:
            values (Tensor): a Tensor of shape (batch_size, seq_length, :, ..., :)
            mask (Tensor): if the mask values are arbitrary floats (rather than binary), the mean will be
            a weighted average.
        allow_empty (bool): allow computing the average of an empty sequence. In this case, we assume 0/0 == 0, rather
            than NaN. Default is False, causing an error to be thrown.

    Returns:
        Tensor: of shape (batch_size, :, ..., :)
    """
    values, mask = seq_batch.values, seq_batch.mask
    # compute weights for the average
    sums = tf.reduce_sum(mask, 1, keep_dims=True)  # (batch_size, 1)

    if allow_empty:
        asserts = []  # no assertion
        sums = tf.select(tf.equal(sums, 0), tf.ones(tf.shape(sums)), sums)  # replace 0's with 1's
    else:
        asserts = [tf.assert_positive(sums)]  # throw error if 0's exist

    with tf.control_dependencies(asserts):
        weights = mask / sums  # (batch_size, seq_length)
    return weighted_sum(seq_batch, weights) 
開發者ID:kelvinguu,項目名稱:lang2program,代碼行數:29,代碼來源:seq_batch.py

示例14: reduce_max

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def reduce_max(seq_batch):
    sums = tf.reduce_sum(seq_batch.mask, 1, keep_dims=True)  # (batch_size, 1)
    with tf.control_dependencies([tf.assert_positive(sums)]):  # avoid dividing by zero
        seq_batch = seq_batch.with_pad_value(float('-inf'))  # set pad values to -inf
        result = tf.reduce_max(seq_batch.values, 1)
    return result 
開發者ID:kelvinguu,項目名稱:lang2program,代碼行數:8,代碼來源:seq_batch.py

示例15: ptb_producer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_positive [as 別名]
def ptb_producer(raw_data, batch_size, num_steps, name=None):
  """Iterate on the raw PTB data.
  This chunks up raw_data into batches of examples and returns Tensors that
  are drawn from these batches.
  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.
    name: the name of this operation (optional).
  Returns:
    A pair of Tensors, each shaped [batch_size, num_steps]. The second element
    of the tuple is the same data time-shifted to the right by one.
  Raises:
    tf.errors.InvalidArgumentError: if batch_size or num_steps are too high.
  """
  with tf.name_scope(name, "PTBProducer", [raw_data, batch_size, num_steps]):
    raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)

    data_len = tf.size(raw_data)
    batch_len = data_len // batch_size
    data = tf.reshape(raw_data[0 : batch_size * batch_len],
                      [batch_size, batch_len])

    epoch_size = (batch_len - 1) // num_steps
    assertion = tf.assert_positive(
        epoch_size,
        message="epoch_size == 0, decrease batch_size or num_steps")
    with tf.control_dependencies([assertion]):
      epoch_size = tf.identity(epoch_size, name="epoch_size")

    i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
    x = tf.strided_slice(data, [0, i * num_steps],
                         [batch_size, (i + 1) * num_steps])
    x.set_shape([batch_size, num_steps])
    y = tf.strided_slice(data, [0, i * num_steps + 1],
                         [batch_size, (i + 1) * num_steps + 1])
    y.set_shape([batch_size, num_steps])
    return x, y 
開發者ID:wenwei202,項目名稱:iss-rnns,代碼行數:40,代碼來源:reader.py


注:本文中的tensorflow.assert_positive方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。