當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assert_non_negative方法代碼示例

本文整理匯總了Python中tensorflow.assert_non_negative方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_non_negative方法的具體用法?Python tensorflow.assert_non_negative怎麽用?Python tensorflow.assert_non_negative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_non_negative方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: bounds_unlabeled

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def bounds_unlabeled(lower: float,
                     upper: float,
                     tensor: tf.Tensor,
                     name: Optional[str] = None) -> tf.Tensor:
  """Checks the tensor elements fall in the given bounds.

  Args:
    lower: The lower bound.
    upper: The upper bound.
    tensor: The input tensor.
    name: Optional op name.

  Returns:
    The input tensor.
  """
  with tf.name_scope(name, 'check_bounds', [tensor]) as scope:
    if FLAGS.tensorcheck_enable_checks:
      lower_bound_op = tf.assert_non_negative(
          tensor - lower, name='lower_bound')
      upper_bound_op = tf.assert_non_positive(
          tensor - upper, name='upper_bound')
      with tf.control_dependencies([lower_bound_op, upper_bound_op]):
        tensor = tf.identity(tensor, name=scope)

    return tensor 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:27,代碼來源:tensorcheck.py

示例2: test_raises_when_negative

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def test_raises_when_negative(self):
    with self.test_session():
      zoe = tf.constant([-1, -2], name="zoe")
      with tf.control_dependencies([tf.assert_non_negative(zoe)]):
        out = tf.identity(zoe)
      with self.assertRaisesOpError("zoe"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例3: test_doesnt_raise_when_zero_and_positive

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def test_doesnt_raise_when_zero_and_positive(self):
    with self.test_session():
      lucas = tf.constant([0, 2], name="lucas")
      with tf.control_dependencies([tf.assert_non_negative(lucas)]):
        out = tf.identity(lucas)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:check_ops_test.py

示例4: test_empty_tensor_doesnt_raise

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def test_empty_tensor_doesnt_raise(self):
    # A tensor is non-negative when it satisfies:
    #   For every element x_i in x, x_i >= 0
    # and an empty tensor has no elements, so this is trivially satisfied.
    # This is standard set theory.
    with self.test_session():
      empty = tf.constant([], name="empty")
      with tf.control_dependencies([tf.assert_non_negative(empty)]):
        out = tf.identity(empty)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:check_ops_test.py

示例5: five_crops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def five_crops(image, crop_size):
    """ Returns the central and four corner crops of `crop_size` from `image`. """
    image_size = tf.shape(image)[:2]
    crop_margin = tf.subtract(image_size, crop_size)
    assert_size = tf.assert_non_negative(
        crop_margin, message='Crop size must be smaller or equal to the image size.')
    with tf.control_dependencies([assert_size]):
        top_left = tf.floor_div(crop_margin, 2)
        bottom_right = tf.add(top_left, crop_size)
    center       = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
    top_left     = image[:-crop_margin[0], :-crop_margin[1]]
    top_right    = image[:-crop_margin[0], crop_margin[1]:]
    bottom_left  = image[crop_margin[0]:, :-crop_margin[1]]
    bottom_right = image[crop_margin[0]:, crop_margin[1]:]
    return center, top_left, top_right, bottom_left, bottom_right 
開發者ID:VisualComputingInstitute,項目名稱:triplet-reid,代碼行數:17,代碼來源:embed.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def __init__(self, preprocess_fn = None):
    # Create a single Session to run all image coding calls.
    # All images must either be in the same format, or have their encoding method recorded.

    # Initializes function that converts PNG to JPEG data.
    self._png_data = tf.placeholder(dtype=tf.string)
    self._decode_png = tf.image.decode_png(self._png_data)
    self._png_to_jpeg = tf.image.encode_jpeg(self._decode_png, format='rgb', quality=100)

    # Initializes function that decodes RGB JPEG data.
    self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
    self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)

    #
    self._decode_image_data = tf.placeholder(dtype=tf.string)
    image = tf.image.decode_image(self._decode_image_data, channels=3)
    self._image_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)

    self._array_image = tf.placeholder(shape=[None, None, None], dtype=tf.uint8)
    self._encode_array_to_jpeg = tf.image.encode_jpeg(self._array_image, format='rgb', quality=100)


    if preprocess_fn:
      image.set_shape([None, None, 3])
      self._decode_preprocessed_image = preprocess_fn(image)
      assert self._decode_preprocessed_image.dtype == tf.uint8
      le_255 = tf.assert_less_equal(self._decode_preprocessed_image, tf.constant(255, tf.uint8))
      ge_0 = tf.assert_non_negative(self._decode_preprocessed_image)
      with tf.control_dependencies([le_255, ge_0]):
        format = 'grayscale' if self._decode_preprocessed_image.shape[-1] == 1 else 'rgb'
        self._image_to_preprocessed_jpeg = tf.image.encode_jpeg(self._decode_preprocessed_image, format=format, quality=100)
        self._image_preprocessed_shape = tf.shape(self._decode_preprocessed_image)
    else:
      self._image_to_preprocessed_jpeg = None
      self._image_preprocessed_shape = None 
開發者ID:jerryli27,項目名稱:TwinGAN,代碼行數:37,代碼來源:dataset_utils.py

示例7: _test_assertions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def _test_assertions(inf_tensors, gen_tensors, eval_tensors):
    """Returns in-graph assertions for testing."""
    observed, latents, divs, log_probs, elbo = inf_tensors
    generated, sampled_latents = gen_tensors
    eval_log_probs, = eval_tensors

    # For RNN, we return None from infer_latents as an optimization.
    if latents is None:
        latents = sampled_latents

    def _same_batch_and_sequence_size_asserts(t1, name1, t2, name2):
        return [
            tf.assert_equal(
                util.batch_size_from_nested_tensors(t1),
                util.batch_size_from_nested_tensors(t2),
                message="Batch: " + name1 + " vs " + name2),
            tf.assert_equal(
                util.sequence_size_from_nested_tensors(t1),
                util.sequence_size_from_nested_tensors(t2),
                message="Steps: " + name1 + " vs " + name2),
        ]

    def _same_shapes(nested1, nested2):
        return snt.nest.flatten(snt.nest.map(
            lambda t1, t2: tf.assert_equal(
                tf.shape(t1), tf.shape(t2),
                message="Shapes: " + t1.name + " vs " + t2.name),
            nested1, nested2))

    def _all_same_batch_and_sequence_sizes(nested):
        batch_size = util.batch_size_from_nested_tensors(nested)
        sequence_size = util.sequence_size_from_nested_tensors(nested)
        return [
            tf.assert_equal(tf.shape(tensor)[0], batch_size,
                            message="Batch: " + tensor.name)
            for tensor in snt.nest.flatten(nested)
        ] + [
            tf.assert_equal(tf.shape(tensor)[1], sequence_size,
                            message="Steps: " + tensor.name)
            for tensor in snt.nest.flatten(nested)
        ]

    assertions = [
        tf.assert_non_negative(divs),
        tf.assert_non_positive(log_probs),
    ] + _same_shapes(
        (log_probs, log_probs,      observed,  latents),
        (divs,      eval_log_probs, generated, sampled_latents)
    ) + _all_same_batch_and_sequence_sizes(
        (observed, latents, divs)
    ) + _all_same_batch_and_sequence_sizes(
        (generated, sampled_latents)
    )
    vars_ = tf.trainable_variables()
    grads = tf.gradients(-elbo, vars_)
    for (var, grad) in zip(vars_, grads):
        assertions.append(tf.check_numerics(grad, "Gradient for " + var.name))
    return assertions 
開發者ID:google,項目名稱:vae-seq,代碼行數:60,代碼來源:vae_test.py

示例8: op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_non_negative [as 別名]
def op(name,
       images,
       max_outputs=3,
       display_name=None,
       description=None,
       collections=None):
  """Create an image summary op for use in a TensorFlow graph.

  Arguments:
    name: A unique name for the generated summary node.
    images: A `Tensor` representing pixel data with shape `[k, w, h, c]`,
      where `k` is the number of images, `w` and `h` are the width and
      height of the images, and `c` is the number of channels, which
      should be 1, 3, or 4. Any of the dimensions may be statically
      unknown (i.e., `None`).
    max_outputs: Optional `int` or rank-0 integer `Tensor`. At most this
      many images will be emitted at each step. When more than
      `max_outputs` many images are provided, the first `max_outputs` many
      images will be used and the rest silently discarded.
    display_name: Optional name for this summary in TensorBoard, as a
      constant `str`. Defaults to `name`.
    description: Optional long-form description for this summary, as a
      constant `str`. Markdown is supported. Defaults to empty.
    collections: Optional list of graph collections keys. The new
      summary op is added to these collections. Defaults to
      `[Graph Keys.SUMMARIES]`.

  Returns:
    A TensorFlow summary op.
  """
  if display_name is None:
    display_name = name
  summary_metadata = metadata.create_summary_metadata(
      display_name=display_name, description=description)
  with tf.name_scope(name), \
       tf.control_dependencies([tf.assert_rank(images, 4),
                                tf.assert_type(images, tf.uint8),
                                tf.assert_non_negative(max_outputs)]):
    limited_images = images[:max_outputs]
    encoded_images = tf.map_fn(tf.image.encode_png, limited_images,
                               dtype=tf.string,
                               name='encode_each_image')
    image_shape = tf.shape(images)
    dimensions = tf.stack([tf.as_string(image_shape[1], name='width'),
                           tf.as_string(image_shape[2], name='height')],
                          name='dimensions')
    tensor = tf.concat([dimensions, encoded_images], axis=0)
    return tf.summary.tensor_summary(name='image_summary',
                                     tensor=tensor,
                                     collections=collections,
                                     summary_metadata=summary_metadata) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:53,代碼來源:summary.py


注:本文中的tensorflow.assert_non_negative方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。