當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assert_less方法代碼示例

本文整理匯總了Python中tensorflow.assert_less方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_less方法的具體用法?Python tensorflow.assert_less怎麽用?Python tensorflow.assert_less使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_less方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: replace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    replace_ops = []
    with tf.control_dependencies([assert_max_length]):
      for buffer_, elements in zip(self._buffers, episodes):
        replace_op = tf.scatter_update(buffer_, rows, elements)
        replace_ops.append(replace_op)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:27,代碼來源:memory.py

示例2: sparse_softmax_cross_entropy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def sparse_softmax_cross_entropy(labels,
                                 logits,
                                 num_classes,
                                 weights=1.0,
                                 label_smoothing=0.1):
  """Softmax cross entropy with example weights, label smoothing."""
  assert_valid_label = [
      tf.assert_greater_equal(labels, tf.cast(0, dtype=tf.int64)),
      tf.assert_less(labels, tf.cast(num_classes, dtype=tf.int64))
  ]
  with tf.control_dependencies(assert_valid_label):
    labels = tf.reshape(labels, [-1])
    dense_labels = tf.one_hot(labels, num_classes)
    loss = tf.losses.softmax_cross_entropy(
        onehot_labels=dense_labels,
        logits=logits,
        weights=weights,
        label_smoothing=label_smoothing)
  return loss 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:21,代碼來源:graph_search_test.py

示例3: replace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    with tf.control_dependencies([assert_max_length]):
      replace_ops = tools.nested.map(
          lambda var, val: tf.scatter_update(var, rows, val),
          self._buffers, episodes, flatten=True)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
開發者ID:google-research,項目名稱:batch-ppo,代碼行數:26,代碼來源:memory.py

示例4: append

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def append(self, transitions, rows=None):
    """Append a batch of transitions to rows of the memory.

    Args:
      transitions: Tuple of transition quantities with batch dimension.
      rows: Episodes to append to, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity,
        message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less(
          tf.gather(self._length, rows), self._max_length,
          message='max length exceeded')
    append_ops = []
    with tf.control_dependencies([assert_max_length]):
      for buffer_, elements in zip(self._buffers, transitions):
        timestep = tf.gather(self._length, rows)
        indices = tf.stack([rows, timestep], 1)
        append_ops.append(tf.scatter_nd_update(buffer_, indices, elements))
    with tf.control_dependencies(append_ops):
      episode_mask = tf.reduce_sum(tf.one_hot(
          rows, self._capacity, dtype=tf.int32), 0)
      return self._length.assign_add(episode_mask) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:31,代碼來源:memory.py

示例5: tf_assert_almost_equal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def tf_assert_almost_equal(x, y, delta=0.001, **kwargs):
	return tf.assert_less(tf.abs(x-y), delta, **kwargs) 
開發者ID:Octavian-ai,項目名稱:shortest-path,代碼行數:4,代碼來源:util.py

示例6: test_raises_when_equal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def test_raises_when_equal(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      with tf.control_dependencies(
          [tf.assert_less(small, small, message="fail")]):
        out = tf.identity(small)
      with self.assertRaisesOpError("fail.*small.*small"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:check_ops_test.py

示例7: test_raises_when_greater

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def test_raises_when_greater(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      big = tf.constant([3, 4], name="big")
      with tf.control_dependencies([tf.assert_less(big, small)]):
        out = tf.identity(small)
      with self.assertRaisesOpError("big.*small"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:check_ops_test.py

示例8: test_doesnt_raise_when_less

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def test_doesnt_raise_when_less(self):
    with self.test_session():
      small = tf.constant([3, 1], name="small")
      big = tf.constant([4, 2], name="big")
      with tf.control_dependencies([tf.assert_less(small, big)]):
        out = tf.identity(small)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例9: test_doesnt_raise_when_less_and_broadcastable_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def test_doesnt_raise_when_less_and_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1], name="small")
      big = tf.constant([3, 2], name="big")
      with tf.control_dependencies([tf.assert_less(small, big)]):
        out = tf.identity(small)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例10: test_raises_when_less_but_non_broadcastable_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def test_raises_when_less_but_non_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1, 1, 1], name="small")
      big = tf.constant([3, 2], name="big")
      with self.assertRaisesRegexp(ValueError, "must be"):
        with tf.control_dependencies([tf.assert_less(small, big)]):
          out = tf.identity(small)
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:check_ops_test.py

示例11: append

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def append(self, transitions, rows=None):
    """Append a batch of transitions to rows of the memory.

    Args:
      transitions: Tuple of transition quantities with batch dimension.
      rows: Episodes to append to, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity,
        message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less(
          tf.gather(self._length, rows), self._max_length,
          message='max length exceeded')
    with tf.control_dependencies([assert_max_length]):
      timestep = tf.gather(self._length, rows)
      indices = tf.stack([rows, timestep], 1)
      append_ops = tools.nested.map(
          lambda var, val: tf.scatter_nd_update(var, indices, val),
          self._buffers, transitions, flatten=True)
    with tf.control_dependencies(append_ops):
      episode_mask = tf.reduce_sum(tf.one_hot(
          rows, self._capacity, dtype=tf.int32), 0)
      return self._length.assign_add(episode_mask) 
開發者ID:google-research,項目名稱:batch-ppo,代碼行數:31,代碼來源:memory.py

示例12: _distribution_statistics

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def _distribution_statistics(distribution: tf.Tensor) -> tf.Tensor:
  """Implementation of `distribution_statisticsy`."""
  _, num_classes = distribution.shape.as_list()
  assert num_classes is not None

  # Each batch element is a probability distribution.
  max_discrepancy = tf.reduce_max(
      tf.abs(tf.reduce_sum(distribution, axis=1) - 1.0))
  with tf.control_dependencies([tf.assert_less(max_discrepancy, 0.0001)]):
    values = tf.reshape(tf.linspace(0.0, 1.0, num_classes), [1, num_classes])

    mode = tf.to_float(tf.argmax(distribution,
                                 axis=1)) / tf.constant(num_classes - 1.0)
    median = tf.reduce_sum(
        tf.to_float(tf.cumsum(distribution, axis=1) < 0.5),
        axis=1) / tf.constant(num_classes - 1.0)
    mean = tf.reduce_sum(distribution * values, axis=1)
    standard_deviation = tf.sqrt(
        tf.reduce_sum(
            ((values - tf.reshape(mean, [-1, 1]))**2) * distribution, axis=1))
    probability_nonzero = 1.0 - distribution[:, 0]
    entropy = tf.reduce_sum(
        -(distribution * tf.log(distribution + 0.0000001)), axis=1) / tf.log(
            float(num_classes))

    statistics = tf.stack(
        [mode, median, mean, standard_deviation, probability_nonzero, entropy],
        axis=1)

    return statistics 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:32,代碼來源:ops.py

示例13: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def call(self, inputs, **kwargs):
        with tf.control_dependencies([tf.assert_greater_equal(inputs, self.index_offset),
                                      tf.assert_less(inputs, self.index_offset + self._num_symbols)]):
            return tf.nn.embedding_lookup(self._embedding, inputs - self.index_offset) 
開發者ID:nii-yamagishilab,項目名稱:tacotron2,代碼行數:6,代碼來源:modules.py

示例14: model_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def model_fn(features, labels, mode, config):
  """Model function for custom estimator."""
  del labels
  del config
  classes = features['classes']
  scores = features['scores']

  with tf.control_dependencies(
      [tf.assert_less(tf.shape(classes)[0], tf.constant(2))]):
    scores = tf.identity(scores)

  predictions = {
      prediction_keys.PredictionKeys.LOGITS: scores,
      prediction_keys.PredictionKeys.PROBABILITIES: scores,
      prediction_keys.PredictionKeys.PREDICTIONS: scores,
      prediction_keys.PredictionKeys.CLASSES: classes,
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                tf.estimator.export.ClassificationOutput(
                    scores=scores, classes=classes),
        })

  loss = tf.constant(0.0)
  train_op = tf.compat.v1.assign_add(tf.compat.v1.train.get_global_step(), 1)
  eval_metric_ops = {
      metric_keys.MetricKeys.LOSS_MEAN: tf.compat.v1.metrics.mean(loss),
  }

  return tf.estimator.EstimatorSpec(
      mode=mode,
      loss=loss,
      train_op=train_op,
      predictions=predictions,
      eval_metric_ops=eval_metric_ops) 
開發者ID:tensorflow,項目名稱:model-analysis,代碼行數:42,代碼來源:batch_size_limited_classifier.py

示例15: create_initial_softmax_from_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_less [as 別名]
def create_initial_softmax_from_labels(last_frame_labels, reference_labels,
                                       decoder_output_stride, reduce_labels):
  """Creates initial softmax predictions from last frame labels.

  Args:
    last_frame_labels: last frame labels of shape [1, height, width, 1].
    reference_labels: reference frame labels of shape [1, height, width, 1].
    decoder_output_stride: Integer, the stride of the decoder. Can be None, in
      this case it's assumed that the last_frame_labels and reference_labels
      are already scaled to the decoder output resolution.
    reduce_labels: Boolean, whether to reduce the depth of the softmax one_hot
      encoding to the actual number of labels present in the reference frame
      (otherwise the depth will be the highest label index + 1).

  Returns:
    init_softmax: the initial softmax predictions.
  """
  if decoder_output_stride is None:
    labels_output_size = last_frame_labels
    reference_labels_output_size = reference_labels
  else:
    h = tf.shape(last_frame_labels)[1]
    w = tf.shape(last_frame_labels)[2]
    h_sub = model.scale_dimension(h, 1.0 / decoder_output_stride)
    w_sub = model.scale_dimension(w, 1.0 / decoder_output_stride)
    labels_output_size = tf.image.resize_nearest_neighbor(
        last_frame_labels, [h_sub, w_sub], align_corners=True)
    reference_labels_output_size = tf.image.resize_nearest_neighbor(
        reference_labels, [h_sub, w_sub], align_corners=True)
  if reduce_labels:
    unique_labels, _ = tf.unique(tf.reshape(reference_labels_output_size, [-1]))
    depth = tf.size(unique_labels)
  else:
    depth = tf.reduce_max(reference_labels_output_size) + 1
  one_hot_assertion = tf.assert_less(tf.reduce_max(labels_output_size), depth)
  with tf.control_dependencies([one_hot_assertion]):
    init_softmax = tf.one_hot(tf.squeeze(labels_output_size,
                                         axis=-1),
                              depth=depth,
                              dtype=tf.float32)
  return init_softmax 
開發者ID:tensorflow,項目名稱:models,代碼行數:43,代碼來源:embedding_utils.py


注:本文中的tensorflow.assert_less方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。