當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assert_greater_equal方法代碼示例

本文整理匯總了Python中tensorflow.assert_greater_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_greater_equal方法的具體用法?Python tensorflow.assert_greater_equal怎麽用?Python tensorflow.assert_greater_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_greater_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def __call__(self, x, y):
        '''
        Return K(x, y), where x and y are possibly batched.
        :param x: shape [..., n_x, n_covariates]
        :param y: shape [..., n_y, n_covariates]
        :return: Tensor with shape [..., n_x, n_y]
        '''
        batch_shape = tf.shape(x)[:-2]
        rank = x.shape.ndims
        assert_ops = [
            tf.assert_greater_equal(
                rank, 2,
                message='RBFKernel: rank(x) should be static and >=2'),
            tf.assert_equal(
                rank, tf.rank(y),
                message='RBFKernel: x and y should have the same rank')]
        with tf.control_dependencies(assert_ops):
            x = tf.expand_dims(x, rank - 1)
            y = tf.expand_dims(y, rank - 2)
            k_scale = tf.reshape(self.k_scale, [1] * rank + [-1])
            ret = tf.exp(
                -tf.reduce_sum(tf.square(x - y) / k_scale, axis=-1) / 2)
        return ret 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:25,代碼來源:utils.py

示例2: sparse_softmax_cross_entropy

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def sparse_softmax_cross_entropy(labels,
                                 logits,
                                 num_classes,
                                 weights=1.0,
                                 label_smoothing=0.1):
  """Softmax cross entropy with example weights, label smoothing."""
  assert_valid_label = [
      tf.assert_greater_equal(labels, tf.cast(0, dtype=tf.int64)),
      tf.assert_less(labels, tf.cast(num_classes, dtype=tf.int64))
  ]
  with tf.control_dependencies(assert_valid_label):
    labels = tf.reshape(labels, [-1])
    dense_labels = tf.one_hot(labels, num_classes)
    loss = tf.losses.softmax_cross_entropy(
        onehot_labels=dense_labels,
        logits=logits,
        weights=weights,
        label_smoothing=label_smoothing)
  return loss 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:21,代碼來源:graph_search_test.py

示例3: _preprocess_for_inception

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def _preprocess_for_inception(images):
  """Preprocess images for inception.

  Args:
    images: images minibatch. Shape [batch size, width, height,
      channels]. Values are in [0..255].

  Returns:
    preprocessed_images
  """

  images = tf.cast(images, tf.float32)

  # tfgan_eval.preprocess_image function takes values in [0, 255]
  with tf.control_dependencies([tf.assert_greater_equal(images, 0.0),
                                tf.assert_less_equal(images, 255.0)]):
    images = tf.identity(images)

  preprocessed_images = tf.map_fn(
    fn=_TFGAN.preprocess_image,
    elems=images,
    back_prop=False)

  return preprocessed_images 
開發者ID:LoSealL,項目名稱:VideoSuperResolution,代碼行數:26,代碼來源:GAN.py

示例4: _project_perturbation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def _project_perturbation(perturbation, epsilon, input_image):
    """Project `perturbation` onto L-infinity ball of radius `epsilon`."""
    # Ensure inputs are in the correct range
    with tf.control_dependencies([
        tf.assert_less_equal(input_image, 1.0),
        tf.assert_greater_equal(input_image, 0.0)
    ]):
        clipped_perturbation = tf.clip_by_value(
            perturbation, -epsilon, epsilon)
        new_image = tf.clip_by_value(
            input_image + clipped_perturbation, 0., 1.)
        return new_image - input_image 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:14,代碼來源:attacks_tf.py

示例5: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def __init__(self,
                 alpha,
                 group_ndims=0,
                 check_numerics=False,
                 **kwargs):
        self._alpha = tf.convert_to_tensor(alpha)
        dtype = assert_same_float_dtype(
            [(self._alpha, 'Dirichlet.alpha')])

        static_alpha_shape = self._alpha.get_shape()
        shape_err_msg = "alpha should have rank >= 1."
        cat_err_msg = "n_categories (length of the last axis " \
                      "of alpha) should be at least 2."
        if static_alpha_shape and (static_alpha_shape.ndims < 1):
            raise ValueError(shape_err_msg)
        elif static_alpha_shape and (
                static_alpha_shape[-1].value is not None):
            self._n_categories = static_alpha_shape[-1].value
            if self._n_categories < 2:
                raise ValueError(cat_err_msg)
        else:
            _assert_shape_op = tf.assert_rank_at_least(
                self._alpha, 1, message=shape_err_msg)
            with tf.control_dependencies([_assert_shape_op]):
                self._alpha = tf.identity(self._alpha)
            self._n_categories = tf.shape(self._alpha)[-1]

            _assert_cat_op = tf.assert_greater_equal(
                self._n_categories, 2, message=cat_err_msg)
            with tf.control_dependencies([_assert_cat_op]):
                self._alpha = tf.identity(self._alpha)
        self._check_numerics = check_numerics

        super(Dirichlet, self).__init__(
            dtype=dtype,
            param_dtype=dtype,
            is_continuous=True,
            is_reparameterized=False,
            group_ndims=group_ndims,
            **kwargs) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:42,代碼來源:multivariate.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def __init__(self,
                 dtype,
                 param_dtype,
                 is_continuous,
                 is_reparameterized,
                 use_path_derivative=False,
                 group_ndims=0,
                 **kwargs):
        if 'group_event_ndims' in kwargs:
            raise ValueError(
                "The argument `group_event_ndims` has been deprecated "
                "Please use `group_ndims` instead.")

        self._dtype = dtype
        self._param_dtype = param_dtype
        self._is_continuous = is_continuous
        self._is_reparameterized = is_reparameterized
        self._use_path_derivative = use_path_derivative
        if isinstance(group_ndims, int):
            if group_ndims < 0:
                raise ValueError("group_ndims must be non-negative.")
            self._group_ndims = group_ndims
        else:
            group_ndims = tf.convert_to_tensor(group_ndims, tf.int32)
            _assert_rank_op = tf.assert_rank(
                group_ndims, 0,
                message="group_ndims should be a scalar (0-D Tensor).")
            _assert_nonnegative_op = tf.assert_greater_equal(
                group_ndims, 0,
                message="group_ndims must be non-negative.")
            with tf.control_dependencies([_assert_rank_op,
                                          _assert_nonnegative_op]):
                self._group_ndims = tf.identity(group_ndims) 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:35,代碼來源:base.py

示例7: check_nonnegative

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def check_nonnegative(value):
  """Check that the value is nonnegative."""
  if isinstance(value, tf.Tensor):
    with tf.control_dependencies([tf.assert_greater_equal(value, 0)]):
      value = tf.identity(value)
  elif value < 0:
    raise ValueError("Value must be non-negative.")
  return value 
開發者ID:yyht,項目名稱:BERT,代碼行數:10,代碼來源:common_layers.py

示例8: pre_attention

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def pre_attention(self, segment_number, query_antecedent,
                    memory_antecedent, bias):
    """Called prior to self-attention, to incorporate memory items.

    Args:
      segment_number: an integer Tensor with shape [batch]
      query_antecedent: a Tensor with shape [batch, length_q, channels]
      memory_antecedent: must be None. Attention normally allows this to be a
        Tensor with shape [batch, length_m, channels], but we currently only
        support memory for decoder-side self-attention.
      bias: bias Tensor (see attention_bias())
    Returns:
      (data, new_query_antecedent, new_memory_antecedent, new_bias)
    """
    with tf.variable_scope(self.name + "/pre_attention", reuse=tf.AUTO_REUSE):
      assert memory_antecedent is None, "We only support language modeling"
      with tf.control_dependencies([
          tf.assert_greater_equal(self.batch_size, tf.size(segment_number))]):
        difference = self.batch_size - tf.size(segment_number)
        segment_number = tf.pad(segment_number, [[0, difference]])
        reset_op = self.reset(tf.reshape(tf.where(
            tf.less(segment_number, self.segment_number)), [-1]))
      memory_results = {}
      with tf.control_dependencies([reset_op]):
        with tf.control_dependencies([
            self.update_segment_number(segment_number)]):
          x = tf.pad(query_antecedent, [
              [0, difference], [0, 0], [0, 0]])
          access_logits, retrieved_mem = self.read(x)
      memory_results["x"] = x
      memory_results["access_logits"] = access_logits
      memory_results["retrieved_mem"] = retrieved_mem
      return memory_results, query_antecedent, memory_antecedent, bias 
開發者ID:yyht,項目名稱:BERT,代碼行數:35,代碼來源:transformer_memory.py

示例9: scale_to_inception_range

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def scale_to_inception_range(image):
  """Scales an image in the range [0,1] to [-1,1] as expected by inception."""
  # Assert that incoming images have been properly scaled to [0,1].
  with tf.control_dependencies(
      [tf.assert_less_equal(tf.reduce_max(image), 1.),
       tf.assert_greater_equal(tf.reduce_min(image), 0.)]):
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    return image 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:11,代碼來源:preprocessing.py

示例10: new_mean_squared

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def new_mean_squared(grad_vec, decay, ms):
  """Calculates the new accumulated mean squared of the gradient.

  Args:
    grad_vec: the vector for the current gradient
    decay: the decay term
    ms: the previous mean_squared value

  Returns:
    the new mean_squared value
  """
  decay_size = decay.get_shape().num_elements()
  decay_check_ops = [
      tf.assert_less_equal(decay, 1., summarize=decay_size),
      tf.assert_greater_equal(decay, 0., summarize=decay_size)]

  with tf.control_dependencies(decay_check_ops):
    grad_squared = tf.square(grad_vec)

  # If the previous mean_squared is the 0 vector, don't use the decay and just
  # return the full grad_squared. This should only happen on the first timestep.
  decay = tf.cond(tf.reduce_all(tf.equal(ms, 0.)),
                  lambda: tf.zeros_like(decay, dtype=tf.float32), lambda: decay)

  # Update the running average of squared gradients.
  epsilon = 1e-12
  return (1. - decay) * (grad_squared + epsilon) + decay * ms 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:29,代碼來源:utils.py

示例11: test_doesnt_raise_when_equal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def test_doesnt_raise_when_equal(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      with tf.control_dependencies([tf.assert_greater_equal(small, small)]):
        out = tf.identity(small)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:8,代碼來源:check_ops_test.py

示例12: test_raises_when_less

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def test_raises_when_less(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      big = tf.constant([3, 4], name="big")
      with tf.control_dependencies(
          [tf.assert_greater_equal(small, big, message="fail")]):
        out = tf.identity(small)
      with self.assertRaisesOpError("fail.*small.*big"):
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:check_ops_test.py

示例13: test_doesnt_raise_when_greater_equal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def test_doesnt_raise_when_greater_equal(self):
    with self.test_session():
      small = tf.constant([1, 2], name="small")
      big = tf.constant([3, 2], name="big")
      with tf.control_dependencies([tf.assert_greater_equal(big, small)]):
        out = tf.identity(small)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例14: test_doesnt_raise_when_greater_equal_and_broadcastable_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def test_doesnt_raise_when_greater_equal_and_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1], name="small")
      big = tf.constant([3, 1], name="big")
      with tf.control_dependencies([tf.assert_greater_equal(big, small)]):
        out = tf.identity(small)
      out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:check_ops_test.py

示例15: test_raises_when_less_equal_but_non_broadcastable_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_greater_equal [as 別名]
def test_raises_when_less_equal_but_non_broadcastable_shapes(self):
    with self.test_session():
      small = tf.constant([1, 1, 1], name="big")
      big = tf.constant([3, 1], name="small")
      with self.assertRaisesRegexp(ValueError, "Dimensions must be equal"):
        with tf.control_dependencies([tf.assert_greater_equal(big, small)]):
          out = tf.identity(small)
        out.eval() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:check_ops_test.py


注:本文中的tensorflow.assert_greater_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。