當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.assert_equal方法代碼示例

本文整理匯總了Python中tensorflow.assert_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.assert_equal方法的具體用法?Python tensorflow.assert_equal怎麽用?Python tensorflow.assert_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.assert_equal方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _assert_correct_number_of_anchors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def _assert_correct_number_of_anchors(self, anchors, feature_map_shape_list):
    """Assert that correct number of anchors was generated.

    Args:
      anchors: box_list.BoxList object holding anchors generated
      feature_map_shape_list: list of (height, width) pairs in the format
        [(height_0, width_0), (height_1, width_1), ...] that the generated
        anchors must align with.
    Returns:
      Op that raises InvalidArgumentError if the number of anchors does not
        match the number of expected anchors.
    """
    expected_num_anchors = 0
    for num_anchors_per_location, feature_map_shape in zip(
        self.num_anchors_per_location(), feature_map_shape_list):
      expected_num_anchors += (num_anchors_per_location
                               * feature_map_shape[0]
                               * feature_map_shape[1])
    return tf.assert_equal(expected_num_anchors, anchors.num_boxes()) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:anchor_generator.py

示例2: _assert_correct_number_of_anchors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def _assert_correct_number_of_anchors(self, anchors_list,
                                        feature_map_shape_list):
    """Assert that correct number of anchors was generated.

    Args:
      anchors_list: A list of box_list.BoxList object holding anchors generated.
      feature_map_shape_list: list of (height, width) pairs in the format
        [(height_0, width_0), (height_1, width_1), ...] that the generated
        anchors must align with.
    Returns:
      Op that raises InvalidArgumentError if the number of anchors does not
        match the number of expected anchors.
    """
    expected_num_anchors = 0
    actual_num_anchors = 0
    for num_anchors_per_location, feature_map_shape, anchors in zip(
        self.num_anchors_per_location(), feature_map_shape_list, anchors_list):
      expected_num_anchors += (num_anchors_per_location
                               * feature_map_shape[0]
                               * feature_map_shape[1])
      actual_num_anchors += anchors.num_boxes()
    return tf.assert_equal(expected_num_anchors, actual_num_anchors) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:anchor_generator.py

示例3: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def __call__(self, x, y):
        '''
        Return K(x, y), where x and y are possibly batched.
        :param x: shape [..., n_x, n_covariates]
        :param y: shape [..., n_y, n_covariates]
        :return: Tensor with shape [..., n_x, n_y]
        '''
        batch_shape = tf.shape(x)[:-2]
        rank = x.shape.ndims
        assert_ops = [
            tf.assert_greater_equal(
                rank, 2,
                message='RBFKernel: rank(x) should be static and >=2'),
            tf.assert_equal(
                rank, tf.rank(y),
                message='RBFKernel: x and y should have the same rank')]
        with tf.control_dependencies(assert_ops):
            x = tf.expand_dims(x, rank - 1)
            y = tf.expand_dims(y, rank - 2)
            k_scale = tf.reshape(self.k_scale, [1] * rank + [-1])
            ret = tf.exp(
                -tf.reduce_sum(tf.square(x - y) / k_scale, axis=-1) / 2)
        return ret 
開發者ID:thu-ml,項目名稱:zhusuan,代碼行數:25,代碼來源:utils.py

示例4: _filter_negative_samples

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def _filter_negative_samples(labels, tensors):
    """keeps only samples with none-negative labels 
    Params:
    -----
    labels: of shape (N,)
    tensors: a list of tensors, each of shape (N, .., ..) the first axis is sample number

    Returns:
    -----
    tensors: filtered tensors
    """
    # return tensors
    keeps = tf.where(tf.greater_equal(labels, 0))
    keeps = tf.reshape(keeps, [-1])

    filtered = []
    for t in tensors:
        tf.assert_equal(tf.shape(t)[0], tf.shape(labels)[0])
        f = tf.gather(t, keeps)
        filtered.append(f)

    return filtered 
開發者ID:CharlesShang,項目名稱:FastMaskRCNN,代碼行數:24,代碼來源:pyramid_network.py

示例5: testReset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def testReset(self):
    batch_size = 2
    key_depth = 3
    val_depth = 5
    memory_size = 4
    memory = transformer_memory.TransformerMemory(
        batch_size, key_depth, val_depth, memory_size)
    vals = tf.random_uniform([batch_size, memory_size, val_depth], minval=1.0)
    logits = tf.random_uniform([batch_size, memory_size], minval=1.0)
    update_op = memory.set(vals, logits)
    reset_op = memory.reset([1])
    mem_vals, mem_logits = memory.get()
    assert_op1 = tf.assert_equal(mem_vals[0], vals[0])
    assert_op2 = tf.assert_equal(mem_logits[0], logits[0])
    with tf.control_dependencies([assert_op1, assert_op2]):
      all_zero1 = tf.reduce_sum(tf.abs(mem_vals[1]))
      all_zero2 = tf.reduce_sum(tf.abs(mem_logits[1]))
    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      session.run(update_op)
      session.run(reset_op)
      zero1, zero2 = session.run([all_zero1, all_zero2])
    self.assertAllEqual(0, zero1)
    self.assertAllEqual(0, zero2) 
開發者ID:yyht,項目名稱:BERT,代碼行數:26,代碼來源:transformer_memory_test.py

示例6: CombineArcAndRootPotentials

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def CombineArcAndRootPotentials(arcs, roots):
  """Combines arc and root potentials into a single set of potentials.

  Args:
    arcs: [B,N,N] tensor of batched arc potentials.
    roots: [B,N] matrix of batched root potentials.

  Returns:
    [B,N,N] tensor P of combined potentials where
      P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t]
  """
  # All arguments must have statically-known rank.
  check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3')
  check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix')

  # All arguments must share the same type.
  dtype = arcs.dtype.base_dtype
  check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch')

  roots_shape = tf.shape(roots)
  arcs_shape = tf.shape(arcs)
  batch_size = roots_shape[0]
  num_tokens = roots_shape[1]
  with tf.control_dependencies([
      tf.assert_equal(batch_size, arcs_shape[0]),
      tf.assert_equal(num_tokens, arcs_shape[1]),
      tf.assert_equal(num_tokens, arcs_shape[2])]):
    return tf.matrix_set_diag(arcs, roots) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:30,代碼來源:digraph_ops.py

示例7: _training

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def _training(self):
    """Perform multiple training iterations of both policy and value baseline.

    Training on the episodes collected in the memory. Reset the memory
    afterwards. Always returns a summary string.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('training'):
      assert_full = tf.assert_equal(
          self._memory_index, self._config.update_every)
      with tf.control_dependencies([assert_full]):
        data = self._memory.data()
      (observ, action, old_mean, old_logstd, reward), length = data
      with tf.control_dependencies([tf.assert_greater(length, 0)]):
        length = tf.identity(length)
      observ = self._observ_filter.transform(observ)
      reward = self._reward_filter.transform(reward)
      policy_summary = self._update_policy(
          observ, action, old_mean, old_logstd, reward, length)
      with tf.control_dependencies([policy_summary]):
        value_summary = self._update_value(observ, reward, length)
      with tf.control_dependencies([value_summary]):
        penalty_summary = self._adjust_penalty(
            observ, old_mean, old_logstd, length)
      with tf.control_dependencies([penalty_summary]):
        clear_memory = tf.group(
            self._memory.clear(), self._memory_index.assign(0))
      with tf.control_dependencies([clear_memory]):
        weight_summary = utility.variable_summaries(
            tf.trainable_variables(), self._config.weight_summaries)
        return tf.summary.merge([
            policy_summary, value_summary, penalty_summary, weight_summary]) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:36,代碼來源:algorithm.py

示例8: _training

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def _training(self):
    """Perform multiple training iterations of both policy and value baseline.

    Training on the episodes collected in the memory. Reset the memory
    afterwards. Always returns a summary string.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('training'):
      assert_full = tf.assert_equal(
          self._memory_index, self._config.update_every)
      with tf.control_dependencies([assert_full]):
        data = self._memory.data()
      (observ, action, old_mean, old_logstd, reward), length = data
      with tf.control_dependencies([tf.assert_greater(length, 0)]):
        length = tf.identity(length)
      observ = self._observ_filter.transform(observ)
      reward = self._reward_filter.transform(reward)
      update_summary = self._perform_update_steps(
          observ, action, old_mean, old_logstd, reward, length)
      with tf.control_dependencies([update_summary]):
        penalty_summary = self._adjust_penalty(
            observ, old_mean, old_logstd, length)
      with tf.control_dependencies([penalty_summary]):
        clear_memory = tf.group(
            self._memory.clear(), self._memory_index.assign(0))
      with tf.control_dependencies([clear_memory]):
        weight_summary = utility.variable_summaries(
            tf.trainable_variables(), self._config.weight_summaries)
        return tf.summary.merge([
            update_summary, penalty_summary, weight_summary]) 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:34,代碼來源:algorithm.py

示例9: conv_elems_1d

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def conv_elems_1d(x, factor, out_depth=None):
  """Decrease the length and change the dimensionality.

  Merge/restore/compress factors positions of dim depth of the input into
  a single position of dim out_depth.
  This is basically just a strided convolution without overlap
  between each strides. The original length has to be divided by factor.

  Args:
    x (tf.Tensor): shape [batch_size, length, depth]
    factor (int): Length compression factor.
    out_depth (int): Output depth

  Returns:
    tf.Tensor: shape [batch_size, length//factor, out_depth]
  """
  out_depth = out_depth or x.get_shape().as_list()[-1]
  # with tf.control_dependencies(  # Dynamic assertion
  #     [tf.assert_equal(tf.shape(x)[1] % factor, 0)]):
  x = tf.expand_dims(x, 1)  # [batch_size, 1, length, depth]
  x = tf.layers.conv2d(
      inputs=x,
      filters=out_depth,
      kernel_size=(1, factor),
      strides=(1, factor),
      padding="valid",
      data_format="channels_last",
  )  # [batch_size, 1, length//factor, out_depth]
  x = tf.squeeze(x, 1)  # [batch_size, length//factor, depth]
  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:32,代碼來源:common_attention.py

示例10: assert_shape_equal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def assert_shape_equal(shape_a, shape_b):
  """Asserts that shape_a and shape_b are equal.

  If the shapes are static, raises a ValueError when the shapes
  mismatch.

  If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
  mismatch.

  Args:
    shape_a: a list containing shape of the first tensor.
    shape_b: a list containing shape of the second tensor.

  Returns:
    Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
    when the shapes are dynamic.

  Raises:
    ValueError: When shapes are both static and unequal.
  """
  if (all(isinstance(dim, int) for dim in shape_a) and
      all(isinstance(dim, int) for dim in shape_b)):
    if shape_a != shape_b:
      raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b))
    else: return tf.no_op()
  else:
    return tf.assert_equal(shape_a, shape_b) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:29,代碼來源:shape_utils.py

示例11: assert_shape_equal_along_first_dimension

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def assert_shape_equal_along_first_dimension(shape_a, shape_b):
  """Asserts that shape_a and shape_b are the same along the 0th-dimension.

  If the shapes are static, raises a ValueError when the shapes
  mismatch.

  If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
  mismatch.

  Args:
    shape_a: a list containing shape of the first tensor.
    shape_b: a list containing shape of the second tensor.

  Returns:
    Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
    when the shapes are dynamic.

  Raises:
    ValueError: When shapes are both static and unequal.
  """
  if isinstance(shape_a[0], int) and isinstance(shape_b[0], int):
    if shape_a[0] != shape_b[0]:
      raise ValueError('Unequal first dimension {}, {}'.format(
          shape_a[0], shape_b[0]))
    else: return tf.no_op()
  else:
    return tf.assert_equal(shape_a[0], shape_b[0]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:29,代碼來源:shape_utils.py

示例12: tf_static_adem_score

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def tf_static_adem_score(context, model_response, reference_response):
    rr_size, rr_dim = reference_response.get_shape().as_list()
    mr_size, mr_dim = model_response.get_shape().as_list()
    ct_size, ct_dim = context.get_shape().as_list()
    with tf.control_dependencies(
        [tf.assert_equal(rr_size, mr_size, message='responses size not equal'),
         tf.assert_equal(ct_size, mr_size, message='context response size not equal')]):
        score, M, N = compute_adem_score(
            context, model_response, reference_response, mr_dim, ct_dim, rr_dim)
    return score, M, N 
開發者ID:Yoctol,項目名稱:ADEM,代碼行數:12,代碼來源:adem_score.py

示例13: tf_static_adem_l1_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def tf_static_adem_l1_loss(human_score, model_score, M, N):
    hs_shape = human_score.get_shape().as_list()
    ms_shape = model_score.get_shape().as_list()
    with tf.control_dependencies(
        [tf.assert_equal(len(hs_shape), 1, message='score should be 1D.'),
         tf.assert_equal(len(ms_shape), 1, message='score should be 1D.'),
         tf.assert_equal(hs_shape, ms_shape,
                         message='human and model scores should have an equal amount.')]):
        return compute_adem_l1_loss(human_score, model_score, M, N) 
開發者ID:Yoctol,項目名稱:ADEM,代碼行數:11,代碼來源:adem_loss.py

示例14: check_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import assert_equal [as 別名]
def check_image(image):
    assertion = tf.assert_equal(tf.shape(image)[-1], 3, message="image must have 3 color channels")
    with tf.control_dependencies([assertion]):
        image = tf.identity(image)

    if image.get_shape().ndims not in (3, 4):
        raise ValueError("image must be either 3 or 4 dimensions")

    # make the last dimension 3 so that you can unstack the colors
    shape = list(image.get_shape())
    shape[-1] = 3
    image.set_shape(shape)
    return image

# based on https://github.com/torch/image/blob/9f65c30167b2048ecbe8b7befdc6b2d6d12baee9/generic/image.c 
開發者ID:ndscigdata,項目名稱:tensorflow-pratice,代碼行數:17,代碼來源:pix2pix.py


注:本文中的tensorflow.assert_equal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。