本文整理匯總了Python中tensorflow.as_string方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.as_string方法的具體用法?Python tensorflow.as_string怎麽用?Python tensorflow.as_string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.as_string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testLargeInt
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def testLargeInt(self):
# Cannot use values outside -128..127 for test, because we're also
# testing int8
s = lambda strs: [x.decode("ascii") for x in strs]
with self.test_session():
input_ = tf.placeholder(tf.int32)
int_inputs_ = [np.iinfo(np.int32).min, np.iinfo(np.int32).max]
output = tf.as_string(input_)
result = output.eval(feed_dict={input_: int_inputs_})
self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_])
input_ = tf.placeholder(tf.int64)
int_inputs_ = [np.iinfo(np.int64).min, np.iinfo(np.int64).max]
output = tf.as_string(input_)
result = output.eval(feed_dict={input_: int_inputs_})
self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_])
示例2: _create_graph_with_table_initialized_by_table_output
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def _create_graph_with_table_initialized_by_table_output():
filename = tf.compat.v1.placeholder(tf.string, ())
table1 = _create_lookup_table_from_file(filename)
# Use output from the first table to initialize the second table.
keys = ['a', 'b', 'c']
tensor_keys = tf.as_string(
table1.lookup(tf.constant(keys, tf.string)))
initializer2 = tf.lookup.KeyValueTensorInitializer(
keys=tensor_keys,
values=tf.range(len(keys), dtype=tf.int64),
key_dtype=tf.string,
value_dtype=tf.int64)
table2 = tf.lookup.StaticHashTable(initializer2, default_value=-1)
x = tf.compat.v1.placeholder(tf.string, (None,))
y = table2.lookup(x)
return {'filename': filename, 'x': x, 'y': y}
示例3: testEstimatedProbabilityDensityMissingKey
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def testEstimatedProbabilityDensityMissingKey(self):
input_size = 5
with tf.compat.v1.Graph().as_default():
input_data = tf.constant([[str(x + 1)] for x in range(input_size)])
count = tf.constant([3] * input_size, tf.int64)
boundaries = tf.as_string(tf.range(input_size))
with mock.patch.object(
mappers.analyzers, 'histogram', side_effect=[(count, boundaries)]):
result = mappers.estimated_probability_density(
input_data, categorical=True)
expected = np.array([[0.2], [0.2], [0.2], [0.2], [0.]], np.float32)
with tf.compat.v1.Session() as sess:
sess.run(tf.compat.v1.tables_initializer())
self.assertAllEqual(expected, sess.run(result))
示例4: markdown_table
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def markdown_table(step):
# The text summary can also contain Markdown, including Markdown
# tables. Markdown tables look like this:
#
# | hello | there |
# |-------|-------|
# | this | is |
# | a | table |
#
# The leading and trailing pipes in each row are optional, and the text
# doesn't actually have to be neatly aligned, so we can create these
# pretty easily. Let's do so.
header_row = "Pounds of chocolate | Happiness"
chocolate = tf.range(step)
happiness = tf.square(chocolate + 1)
chocolate_column = tf.as_string(chocolate)
happiness_column = tf.as_string(happiness)
table_rows = tf.strings.join([chocolate_column, " | ", happiness_column])
table_body = tf.strings.reduce_join(inputs=table_rows, separator="\n")
table = tf.strings.join([header_row, "---|---", table_body], separator="\n")
preamble = "We conducted an experiment and found the following data:\n\n"
result = tf.strings.join([preamble, table])
tf.compat.v1.summary.text("chocolate_study", result)
示例5: _parse_csv
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def _parse_csv(rows_string_tensor):
"""Takes the string input tensor and returns a dict of rank-2 tensors."""
example_count = tf.io.decode_csv(
records=rows_string_tensor,
record_defaults=[tf.constant([0], dtype=tf.int32, shape=None)])[0]
input_index, intra_input_index = _indices_from_example_count(example_count)
annotation = tf.strings.join([
'raw_input: ',
tf.gather(rows_string_tensor, input_index), '; index: ',
tf.as_string(intra_input_index)
])
return {
'example_count': tf.gather(example_count, input_index),
'input_index': input_index,
'intra_input_index': intra_input_index,
'annotation': annotation,
}
示例6: _replace_empty_string_with_random_number
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def _replace_empty_string_with_random_number(string_tensor):
"""Returns string unchanged if non-empty, and random string tensor otherwise.
The random string is an integer 0 and 2**63 - 1, casted as string.
Args:
string_tensor: A tf.tensor of dtype string.
Returns:
out_string: A tf.tensor of dtype string. If string_tensor contains the empty
string, out_string will contain a random integer casted to a string.
Otherwise string_tensor is returned unchanged.
"""
empty_string = tf.constant('', dtype=tf.string, name='EmptyString')
random_source_id = tf.as_string(
tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))
out_string = tf.cond(
tf.equal(string_tensor, empty_string),
true_fn=lambda: random_source_id,
false_fn=lambda: string_tensor)
return out_string
示例7: get_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def get_dataset(
path: str,
train_fraction: float = 0.7,
split: str = "train"
) -> tf.data.Dataset:
def split_label(*row):
return dict(zip(FEATURES, row)), row[-1]
def in_training_set(*row):
num_buckets = 1000
key = tf.strings.join(list(map(tf.as_string, row)))
bucket_id = tf.strings.to_hash_bucket_fast(key, num_buckets)
return bucket_id < int(train_fraction * num_buckets)
def in_test_set(*row):
return ~in_training_set(*row)
data = tf.data.experimental.CsvDataset(
path,
[tf.float32] * len(FEATURES) + [tf.int32],
header=True,
field_delim=";")
if split == "train":
return data.filter(in_training_set).map(split_label)
elif split == "test":
return data.filter(in_test_set).map(split_label)
else:
raise ValueError("Unknown option split, must be 'train' or 'test'")
示例8: build_metagraph_list
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def build_metagraph_list(self):
"""
Convert MetaParams into TF Summary Format and create summary_op
Args:
None
Returns:
Merged TF Op for TEXT summary elements, should only be executed once to reduce data duplication
"""
ops = []
self.ignore_unknown_dtypes = True
for key in sorted(self.meta_params):
value = self.convert_data_to_string(self.meta_params[key])
if len(value) == 0:
continue
if isinstance(value,str):
ops.append(tf.summary.text(key, tf.convert_to_tensor(str(value))))
else:
ops.append(tf.summary.text(key, tf.as_string(tf.convert_to_tensor(value))))
with tf.control_dependencies(tf.tuple(ops)):
self.summary_merged = tf.summary.merge_all()
return self.summary_merged
示例9: version_9
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def version_9(cls, node, **kwargs):
inp = kwargs["tensor_dict"][node.inputs[0]]
to_type = node.attrs.get("to")
if to_type == tf.string:
return [tf.as_string(inp)]
if inp.dtype == tf.string:
if to_type not in [tf.float32, tf.float64, tf.int32, tf.int64]:
raise RuntimeError(
"Cast string to type {} is not supported in Tensorflow.".format(
to_type))
return [tf.strings.to_number(inp, to_type)]
return [cls.make_tensor_from_onnx_node(node, **kwargs)]
示例10: build_row_key_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def build_row_key_dataset(num_records, row_prefix):
if num_records is not None:
ds = tf.data.Dataset.range(num_records)
else:
ds = tf.contrib.data.Counter()
if num_records is None:
width = 10
else:
width = pad_width(num_records)
ds = ds.map(lambda idx: tf.as_string(idx, width=width, fill='0'))
if row_prefix is not None:
ds = ds.map(lambda idx: tf.string_join([row_prefix, idx]))
return ds
示例11: testInt
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def testInt(self):
# Cannot use values outside -128..127 for test, because we're also
# testing int8
int_inputs_ = [0, -1, 1, -128, 127, -101, 101, -0]
s = lambda strs: [x.decode("ascii") for x in strs]
with self.test_session():
for dtype in (tf.int32, tf.int64, tf.int8):
input_ = tf.placeholder(dtype)
output = tf.as_string(input_)
result = output.eval(feed_dict={input_: int_inputs_})
self.assertAllEqual(s(result), ["%d" % x for x in int_inputs_])
output = tf.as_string(input_, width=3)
result = output.eval(feed_dict={input_: int_inputs_})
self.assertAllEqual(s(result), ["%3d" % x for x in int_inputs_])
output = tf.as_string(input_, width=3, fill="0")
result = output.eval(feed_dict={input_: int_inputs_})
self.assertAllEqual(s(result), ["%03d" % x for x in int_inputs_])
with self.assertRaisesOpError("scientific and shortest"):
output = tf.as_string(input_, scientific=True)
output.eval(feed_dict={input_: int_inputs_})
with self.assertRaisesOpError("scientific and shortest"):
output = tf.as_string(input_, shortest=True)
output.eval(feed_dict={input_: int_inputs_})
with self.assertRaisesOpError("precision not supported"):
output = tf.as_string(input_, precision=0)
output.eval(feed_dict={input_: int_inputs_})
示例12: testBool
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def testBool(self):
bool_inputs_ = [False, True]
s = lambda strs: [x.decode("ascii") for x in strs]
with self.test_session():
for dtype in (tf.bool,):
input_ = tf.placeholder(dtype)
output = tf.as_string(input_)
result = output.eval(feed_dict={input_: bool_inputs_})
self.assertAllEqual(s(result), ["false", "true"])
示例13: setUp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def setUp(self):
super(BatchSequencesWithStatesTest, self).setUp()
self.value_length = 4
self.batch_size = 2
self.key = tf.string_join(["key_", tf.as_string(tf.cast(
10000 * tf.random_uniform(()), tf.int32))])
self.sequences = {"seq1": np.random.rand(self.value_length, 5),
"seq2": np.random.rand(self.value_length, 4, 2)}
self.context = {"context1": [3, 4]}
self.initial_states = {"state1": np.random.rand(6, 7),
"state2": np.random.rand(8)}
示例14: _build_pred
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def _build_pred(self):
decoded, log_prob = tf.nn.ctc_greedy_decoder(self.logits, self.sequence_length)
self.decoded = tf.identity(decoded[0], name='decoded')
self.log_prob = tf.identity(log_prob, name='log_prob')
if self.is_training:
pred_str_labels = tf.as_string(self.decoded.values)
pred_tensor = tf.SparseTensor(indices=self.decoded.indices, values=pred_str_labels, dense_shape=self.decoded.dense_shape)
true_str_labels = tf.as_string(self.labels.values)
true_tensor = tf.SparseTensor(indices=self.labels.indices, values=true_str_labels, dense_shape=self.labels.dense_shape)
self.edit_distance = tf.reduce_mean(tf.edit_distance(pred_tensor, true_tensor, normalize=True), name='distance')
示例15: preprocess
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import as_string [as 別名]
def preprocess(inputs):
"""tf.transform's callback function for preprocessing inputs.
Args:
inputs: map from feature keys to raw not-yet-transformed features.
Returns:
Map from string feature key to transformed feature operations.
"""
outputs = {}
for key in DENSE_FLOAT_FEATURE_KEYS:
# Preserve this feature as a dense float, setting nan's to the mean.
outputs[key] = transform.scale_to_z_score(inputs[key])
for key in VOCAB_FEATURE_KEYS:
# Build a vocabulary for this feature.
if inputs[key].dtype == tf.string:
vocab_tensor = inputs[key]
else:
vocab_tensor = tf.as_string(inputs[key])
outputs[key] = transform.string_to_int(
vocab_tensor, vocab_filename='vocab_' + key,
top_k=VOCAB_SIZE, num_oov_buckets=OOV_SIZE)
for key in BUCKET_FEATURE_KEYS:
outputs[key] = transform.bucketize(inputs[key], FEATURE_BUCKET_COUNT)
for key in CATEGORICAL_FEATURE_KEYS:
outputs[key] = tf.to_int64(inputs[key])
taxi_fare = inputs[FARE_KEY]
taxi_tip = inputs[LABEL_KEY]
# Test if the tip was > 20% of the fare.
tip_threshold = tf.multiply(taxi_fare, tf.constant(0.2))
outputs[LABEL_KEY] = tf.logical_and(
tf.logical_not(tf.is_nan(taxi_fare)),
tf.greater(taxi_tip, tip_threshold))
return outputs