當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.argsort方法代碼示例

本文整理匯總了Python中tensorflow.argsort方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.argsort方法的具體用法?Python tensorflow.argsort怎麽用?Python tensorflow.argsort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.argsort方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _to_nd_indices

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def _to_nd_indices(indices):
    """Returns indices used for tf.gather_nd or tf.scatter_nd.

    Args:
      indices: A `Tensor` of shape [batch_size, size] with integer values. The
        values are the indices of another `Tensor`. For example, `indices` is the
        output of tf.argsort or tf.math.top_k.

    Returns:
      A `Tensor` with shape [batch_size, size, 2] that can be used by tf.gather_nd
      or tf.scatter_nd.

    """
    indices.get_shape().assert_has_rank(2)
    batch_ids = tf.ones_like(indices) * tf.expand_dims(
        tf.range(tf.shape(input=indices)[0]), 1)
    return tf.stack([batch_ids, indices], axis=-1) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:19,代碼來源:metric_utils.py

示例2: _to_nd_indices

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def _to_nd_indices(indices):
  """Returns indices used for tf.gather_nd or tf.scatter_nd.

  Args:
    indices: A `Tensor` of shape [batch_size, size] with integer values. The
      values are the indices of another `Tensor`. For example, `indices` is the
      output of tf.argsort or tf.math.top_k.

  Returns:
    A `Tensor` with shape [batch_size, size, 2] that can be used by tf.gather_nd
    or tf.scatter_nd.

  """
  indices.get_shape().assert_has_rank(2)
  batch_ids = tf.ones_like(indices) * tf.expand_dims(
      tf.range(tf.shape(input=indices)[0]), 1)
  return tf.stack([batch_ids, indices], axis=-1) 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:19,代碼來源:utils.py

示例3: hard_negative_mining

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def hard_negative_mining(loss, gt_confs, neg_ratio):
    """ Hard negative mining algorithm
        to pick up negative examples for back-propagation
        base on classification loss values
    Args:
        loss: list of classification losses of all default boxes (B, num_default)
        gt_confs: classification targets (B, num_default)
        neg_ratio: negative / positive ratio
    Returns:
        conf_loss: classification loss
        loc_loss: regression loss
    """
    # loss: B x N
    # gt_confs: B x N
    pos_idx = gt_confs > 0
    num_pos = tf.reduce_sum(tf.dtypes.cast(pos_idx, tf.int32), axis=1)
    num_neg = num_pos * neg_ratio

    rank = tf.argsort(loss, axis=1, direction='DESCENDING')
    rank = tf.argsort(rank, axis=1)
    neg_idx = rank < tf.expand_dims(num_neg, 1)

    return pos_idx, neg_idx 
開發者ID:ChunML,項目名稱:ssd-tf2,代碼行數:25,代碼來源:losses.py

示例4: _top_k_sample

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def _top_k_sample(logits, ignore_ids=None, num_samples=1, k=10):
    """
    Does top-k sampling. if ignore_ids is on, then we will zero out those logits.
    :param logits: [batch_size, vocab_size] tensor
    :param ignore_ids: [vocab_size] one-hot representation of the indices we'd like to ignore and never predict,
                        like padding maybe
    :param p: topp threshold to use, either a float or a [batch_size] vector
    :return: [batch_size, num_samples] samples

    # TODO FIGURE OUT HOW TO DO THIS ON TPUS. IT'S HELLA SLOW RIGHT NOW, DUE TO ARGSORT I THINK
    """
    with tf.variable_scope('top_p_sample'):
        batch_size, vocab_size = get_shape_list(logits, expected_rank=2)

        probs = tf.nn.softmax(logits if ignore_ids is None else logits - tf.cast(ignore_ids[None], tf.float32) * 1e10,
                              axis=-1)
        # [batch_size, vocab_perm]
        indices = tf.argsort(probs, direction='DESCENDING')

        # find the top pth index to cut off. careful we don't want to cutoff everything!
        # result will be [batch_size, vocab_perm]
        k_expanded = k if isinstance(k, int) else k[:, None]
        exclude_mask = tf.range(vocab_size)[None] >= k_expanded

        # OPTION A - sample in the sorted space, then unsort.
        logits_to_use = tf.batch_gather(logits, indices) - tf.cast(exclude_mask, tf.float32) * 1e10
        sample_perm = tf.random.categorical(logits=logits_to_use, num_samples=num_samples)
        sample = tf.batch_gather(indices, sample_perm)

    return {
        'probs': probs,
        'sample': sample,
    } 
開發者ID:rowanz,項目名稱:grover,代碼行數:35,代碼來源:modeling.py

示例5: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def call(self, inputs):
        if self.data_mode == 'disjoint':
            X, I = inputs
            X = ops.disjoint_signal_to_batch(X, I)
        else:
            X = inputs
            if self.data_mode == 'single':
                X = tf.expand_dims(X, 0)

        N = tf.shape(X)[-2]
        sort_perm = tf.argsort(X[..., -1], direction='DESCENDING')
        X_sorted = tf.gather(X, sort_perm, axis=-2, batch_dims=1)

        def truncate():
            _X_out = X_sorted[..., : self.k, :]
            return _X_out

        def pad():
            padding = [[0, 0], [0, self.k - N], [0, 0]]
            _X_out = tf.pad(X_sorted, padding)
            return _X_out

        X_out = tf.cond(tf.less_equal(self.k, N), truncate, pad)

        if self.data_mode == 'single':
            X_out = tf.squeeze(X_out, [0])
            X_out.set_shape((self.k, self.F))
        elif self.data_mode == 'batch' or self.data_mode == 'disjoint':
            X_out.set_shape((None, self.k, self.F))

        return X_out 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:33,代碼來源:global_pool.py

示例6: gumbel_softmax

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def gumbel_softmax(logits, temperature, gumbel_samples=None, samples=1, greedy=False): 
	""" Draw a sample from the Gumbel-Softmax distribution"""
	input_shape_list = bert_utils.get_shape_list(logits, expected_rank=2)
	if samples > 1:
		logits = tf.expand_dims(logits, -1)
	if gumbel_samples is None:
		gumbel_samples = sample_gumbel(input_shape_list, samples)
	if greedy:
		tf.logging.info("==apply greedy based sampling and discrete relax==")
		# if int(tf.__version__.split(".")[1]) < 15:
		# 	if not use_tpu:
		# 		logits_index = tf.contrib.framework.argsort(logits, axis=1)
		# 		gumbel_samples_sorted = tf.contrib.framework.sort(gumbel_samples, axis=1)
		# 		gumbel_samples_sorted = reorder(gumbel_samples_sorted, logits_index)
		# 	else:

		# else:
		# 	logits_index = tf.argsort(logits, axis=1)
		# 	gumbel_samples_sorted = tf.sort(gumbel_samples, axis=1)
		# 	gumbel_samples_sorted = reorder(gumbel_samples_sorted, logits_index)

		gumbel_samples = reorder_approximate(logits, gumbel_samples)
		y = logits + gumbel_samples
		return [tf.exp(tf.nn.log_softmax(y / temperature, axis=1)),
				y]
	else:
		y = logits + gumbel_samples
		tf.logging.info("==apply sampling based sampling and discrete relax==")
		return [tf.exp(tf.nn.log_softmax(y / temperature, axis=1)), 
				y] 
開發者ID:yyht,項目名稱:BERT,代碼行數:32,代碼來源:token_generator_gumbel.py

示例7: nucleus_sampling

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def nucleus_sampling(logits, vocab_size, p=0.9, 
					input_ids=None, input_ori_ids=None,
					**kargs):
	input_shape_list = bert_utils.get_shape_list(logits, expected_rank=[2,3])
	if len(input_shape_list) == 3:
		logits = tf.reshape(logits, (-1, vocab_size))
	probs = tf.nn.softmax(logits, axis=-1)
	# [batch_size, seq, vocab_perm]
	# indices = tf.argsort(probs, direction='DESCENDING')
	indices = tf.contrib.framework.argsort(probs, direction='DESCENDING')

	cumulative_probabilities = tf.math.cumsum(tf.batch_gather(probs, indices), axis=-1, exclusive=False)
	
	# find the top pth index to cut off. careful we don't want to cutoff everything!
	# result will be [batch_size, seq, vocab_perm]
	exclude_mask = tf.logical_not(
	tf.logical_or(cumulative_probabilities < p, tf.range(vocab_size)[None] < 1))
	exclude_mask = tf.cast(exclude_mask, tf.float32)

	indices_v1 = tf.contrib.framework.argsort(indices)
	exclude_mask = reorder(exclude_mask, tf.cast(indices_v1, dtype=tf.int32))
	if len(input_shape_list) == 3:
		exclude_mask = tf.reshape(exclude_mask, input_shape_list)
		# logits = tf.reshape(logits, input_shape_list)

	if input_ids is not None and input_ori_ids is not None:
		exclude_mask, input_ori_ids = get_extra_mask(
								input_ids, input_ori_ids, 
								exclude_mask, vocab_size,
								**kargs)

		return [exclude_mask, input_ori_ids]
	else:
		return [exclude_mask] 
開發者ID:yyht,項目名稱:BERT,代碼行數:36,代碼來源:nuelus_sampling_utils.py

示例8: sort_key_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def sort_key_val(t1, t2, dim=-1):
    values = tf.sort(t1, axis=dim)
    t2 = tf.broadcast_to(t2, t1.shape)
    return values, tf.gather(t2, tf.argsort(t1, axis=dim), axis=dim) 
開發者ID:yyht,項目名稱:BERT,代碼行數:6,代碼來源:reformer_utils.py

示例9: _apply

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def _apply(self, words):
    if self.max_distance == 0:
      return tf.identity(words)
    num_words = tf.shape(words)[0]
    offset = tf.random.uniform([num_words], maxval=1) * (self.max_distance + 1)
    offset = tf.cast(offset, num_words.dtype)
    new_pos = tf.argsort(tf.range(num_words) + offset)
    return tf.gather(words, new_pos) 
開發者ID:OpenNMT,項目名稱:OpenNMT-tf,代碼行數:10,代碼來源:noise.py

示例10: get_top_elements

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def get_top_elements(list_of_elements, max_user_contribution):
  """Gets the top max_user_contribution words from the input list.

  Note that the returned set of top words will not necessarily be sorted.

  Args:
    list_of_elements: A tensor containing a list of elements.
    max_user_contribution: The maximum number of elements to keep.

  Returns:
    A tensor of a list of strings.
    If the total number of unique words is less than or equal to
    max_user_contribution, returns the set of unique words.
  """
  words, _, counts = tf.unique_with_counts(list_of_elements)
  if tf.size(words) > max_user_contribution:
    # This logic is influenced by the focus on global heavy hitters and
    # thus implements clipping by chopping the tail of the distribution
    # of the words as present on a single client. Another option could
    # be to provide pick max_words_per_user random words out of the unique
    # words present locally.
    top_indices = tf.argsort(
        counts, axis=-1, direction='DESCENDING')[:max_user_contribution]
    top_words = tf.gather(words, top_indices)
    return top_words
  return words 
開發者ID:tensorflow,項目名稱:federated,代碼行數:28,代碼來源:heavy_hitters_utils.py

示例11: sort_by_scores

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def sort_by_scores(scores,
                   features_list,
                   topn=None,
                   shuffle_ties=True,
                   seed=None):
    """Sorts example features according to per-example scores.

    Args:
      scores: A `Tensor` of shape [batch_size, list_size] representing the
        per-example scores.
      features_list: A list of `Tensor`s with the same shape as scores to be
        sorted.
      topn: An integer as the cutoff of examples in the sorted list.
      shuffle_ties: A boolean. If True, randomly shuffle before the sorting.
      seed: The ops-level random seed used when `shuffle_ties` is True.

    Returns:
      A list of `Tensor`s as the list of sorted features by `scores`.
    """
    with tf.compat.v1.name_scope(name='sort_by_scores'):
        scores = tf.cast(scores, tf.float32)
        scores.get_shape().assert_has_rank(2)
        list_size = tf.shape(input=scores)[1]
        if topn is None:
            topn = list_size
        topn = tf.minimum(topn, list_size)
        shuffle_ind = None
        if shuffle_ties:
            shuffle_ind = _to_nd_indices(
                tf.argsort(
                    tf.random.uniform(tf.shape(input=scores), seed=seed),
                    stable=True))
            scores = tf.gather_nd(scores, shuffle_ind)
        _, indices = tf.math.top_k(scores, topn, sorted=True)
        nd_indices = _to_nd_indices(indices)
        if shuffle_ind is not None:
            nd_indices = tf.gather_nd(shuffle_ind, nd_indices)
        return [tf.gather_nd(f, nd_indices) for f in features_list] 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:40,代碼來源:metric_utils.py

示例12: sorted_ranks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def sorted_ranks(scores, shuffle_ties=True, seed=None):
    """Returns an int `Tensor` as the ranks (1-based) after sorting scores.

    Example: Given scores = [[1.0, 3.5, 2.1]], the returned ranks will be [[3, 1,
    2]]. It means that scores 1.0 will be ranked at position 3, 3.5 will be ranked
    at position 1, and 2.1 will be ranked at position 2.

    Args:
      scores: A `Tensor` of shape [batch_size, list_size] representing the
        per-example scores.
      shuffle_ties: See `sort_by_scores`.
      seed: See `sort_by_scores`.

    Returns:
      A 1-based int `Tensor`s as the ranks.
    """
    with tf.compat.v1.name_scope(name='sorted_ranks'):
        batch_size, list_size = tf.unstack(tf.shape(input=scores))
        # The current position in the list for each score.
        positions = tf.tile(
            tf.expand_dims(
                tf.range(list_size), 0), [
                batch_size, 1])
        # For score [[1.0, 3.5, 2.1]], sorted_positions are [[1, 2, 0]], meaning the
        # largest score is at poistion 1, the second is at postion 2 and third is at
        # position 0.
        sorted_positions = sort_by_scores(
            scores, [positions], shuffle_ties=shuffle_ties, seed=seed)[0]
        # The indices of sorting sorted_postions will be [[2, 0, 1]] and ranks are
        # 1-based and thus are [[3, 1, 2]].
        ranks = tf.argsort(sorted_positions) + 1
        return ranks 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:34,代碼來源:metric_utils.py

示例13: organize_valid_indices

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def organize_valid_indices(is_valid, shuffle=True, seed=None):
    """Organizes indices in such a way that valid items appear first.

    Args:
      is_valid: A boolen `Tensor` for entry validity with shape [batch_size,
        list_size].
      shuffle: A boolean indicating whether valid items should be shuffled.
      seed: An int for random seed at the op level. It works together with the
        seed at global graph level together to determine the random number
        generation. See `tf.set_random_seed`.

    Returns:
      A tensor of indices with shape [batch_size, list_size, 2]. The returned
      tensor can be used with `tf.gather_nd` and `tf.scatter_nd` to compose a new
      [batch_size, list_size] tensor. The values in the last dimension are the
      indices for an element in the input tensor.
    """
    with tf.compat.v1.name_scope(name='organize_valid_indices'):
        is_valid = tf.convert_to_tensor(value=is_valid)
        is_valid.get_shape().assert_has_rank(2)
        output_shape = tf.shape(input=is_valid)

        if shuffle:
            values = tf.random.uniform(output_shape, seed=seed)
        else:
            values = (
                tf.ones_like(is_valid, tf.float32) * tf.reverse(
                    tf.cast(tf.range(output_shape[1]), dtype=tf.float32), [-1]))

        rand = tf.compat.v1.where(
            is_valid, values, tf.ones(output_shape) * -1e-6)
        # shape(indices) = [batch_size, list_size]
        indices = tf.argsort(rand, direction='DESCENDING', stable=True)
        return _to_nd_indices(indices) 
開發者ID:ULTR-Community,項目名稱:ULTRA,代碼行數:36,代碼來源:metric_utils.py

示例14: sort_by_scores

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def sort_by_scores(scores,
                   features_list,
                   topn=None,
                   shuffle_ties=True,
                   seed=None):
  """Sorts example features according to per-example scores.

  Args:
    scores: A `Tensor` of shape [batch_size, list_size] representing the
      per-example scores.
    features_list: A list of `Tensor`s with the same shape as scores to be
      sorted.
    topn: An integer as the cutoff of examples in the sorted list.
    shuffle_ties: A boolean. If True, randomly shuffle before the sorting.
    seed: The ops-level random seed used when `shuffle_ties` is True.

  Returns:
    A list of `Tensor`s as the list of sorted features by `scores`.
  """
  with tf.compat.v1.name_scope(name='sort_by_scores'):
    scores = tf.cast(scores, tf.float32)
    scores.get_shape().assert_has_rank(2)
    list_size = tf.shape(input=scores)[1]
    if topn is None:
      topn = list_size
    topn = tf.minimum(topn, list_size)
    shuffle_ind = None
    if shuffle_ties:
      shuffle_ind = _to_nd_indices(
          tf.argsort(
              tf.random.uniform(tf.shape(input=scores), seed=seed),
              stable=True))
      scores = tf.gather_nd(scores, shuffle_ind)
    _, indices = tf.math.top_k(scores, topn, sorted=True)
    nd_indices = _to_nd_indices(indices)
    if shuffle_ind is not None:
      nd_indices = tf.gather_nd(shuffle_ind, nd_indices)
    return [tf.gather_nd(f, nd_indices) for f in features_list] 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:40,代碼來源:utils.py

示例15: sorted_ranks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argsort [as 別名]
def sorted_ranks(scores, shuffle_ties=True, seed=None):
  """Returns an int `Tensor` as the ranks (1-based) after sorting scores.

  Example: Given scores = [[1.0, 3.5, 2.1]], the returned ranks will be [[3, 1,
  2]]. It means that scores 1.0 will be ranked at position 3, 3.5 will be ranked
  at position 1, and 2.1 will be ranked at position 2.

  Args:
    scores: A `Tensor` of shape [batch_size, list_size] representing the
      per-example scores.
    shuffle_ties: See `sort_by_scores`.
    seed: See `sort_by_scores`.

  Returns:
    A 1-based int `Tensor`s as the ranks.
  """
  with tf.compat.v1.name_scope(name='sorted_ranks'):
    batch_size, list_size = tf.unstack(tf.shape(input=scores))
    # The current position in the list for each score.
    positions = tf.tile(tf.expand_dims(tf.range(list_size), 0), [batch_size, 1])
    # For score [[1.0, 3.5, 2.1]], sorted_positions are [[1, 2, 0]], meaning the
    # largest score is at position 1, the 2nd is at position 2 and 3rd is at
    # position 0.
    sorted_positions = sort_by_scores(
        scores, [positions], shuffle_ties=shuffle_ties, seed=seed)[0]
    # The indices of sorting sorted_positions will be [[2, 0, 1]] and ranks are
    # 1-based and thus are [[3, 1, 2]].
    ranks = tf.argsort(sorted_positions) + 1
    return ranks 
開發者ID:tensorflow,項目名稱:ranking,代碼行數:31,代碼來源:utils.py


注:本文中的tensorflow.argsort方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。