當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.argmin方法代碼示例

本文整理匯總了Python中tensorflow.argmin方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.argmin方法的具體用法?Python tensorflow.argmin怎麽用?Python tensorflow.argmin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.argmin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_pulling_indices

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def get_pulling_indices(self, weight):
    clst_num = self.cluster_centroids.shape[0]
    tiled_weights = tf.tile(tf.expand_dims(weight, 4), [1, 1, 1, 1, clst_num])

    # Do the ugly reshape to the clustering points
    tiled_cluster_centroids = tf.stack(
        [tf.tile(tf.stack(
            [tf.reshape(self.cluster_centroids, [1, 1, clst_num])] *
            weight.shape[-2], axis=2),
                 [weight.shape[0], weight.shape[1], 1, 1])] * weight.shape[-1],
        axis=3)

    # We find the nearest cluster centroids and store them so that ops can build
    # their kernels upon it
    pulling_indices = tf.argmin(
        tf.abs(tiled_weights - tiled_cluster_centroids), axis=4
    )

    return pulling_indices 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:21,代碼來源:clustering_registry.py

示例2: vq

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def vq(z_e):
    '''Vector Quantization.

    Args:
      z_e: encoded variable. [B, t, D].

    Returns:
      z_q: nearest embeddings. [B, t, D].
    '''
    with tf.variable_scope("vq"):
        lookup_table = tf.get_variable('lookup_table',
                                       dtype=tf.float32,
                                       shape=[hp.K, hp.D],
                                       initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.1))
        z = tf.expand_dims(z_e, -2) # (B, t, 1, D)
        lookup_table_ = tf.reshape(lookup_table, [1, 1, hp.K, hp.D]) # (1, 1, K, D)
        dist = tf.norm(z - lookup_table_, axis=-1) # Broadcasting -> (B, T', K)
        k = tf.argmin(dist, axis=-1) # (B, t)
        z_q = tf.gather(lookup_table, k) # (B, t, D)

    return z_q 
開發者ID:Kyubyong,項目名稱:vq-vae,代碼行數:23,代碼來源:networks.py

示例3: stepll_adversarial_images

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def stepll_adversarial_images(x, eps):
  """One step towards least likely class (Step L.L.) adversarial examples.

  This method is an alternative to FGSM which does not use true classes.
  Method is described in the "Adversarial Machine Learning at Scale" paper,
  https://arxiv.org/abs/1611.01236

  Args:
    x: source images
    eps: size of adversarial perturbation

  Returns:
    adversarial images
  """
  logits, _ = create_model(x, reuse=True)
  least_likely_class = tf.argmin(logits, 1)
  one_hot_ll_class = tf.one_hot(least_likely_class, NUM_CLASSES)
  return step_target_class_adversarial_images(x, eps, one_hot_ll_class) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:20,代碼來源:eval_on_adversarial.py

示例4: stepllnoise_adversarial_images

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def stepllnoise_adversarial_images(x, eps):
  """Step L.L. with noise method.

  This is an imporvement of Step L.L. method. This method is better against
  adversarially trained models which learn to mask gradient.
  Method is described in the section "New randomized one shot attack" of
  "Ensemble Adversarial Training: Attacks and Defenses" paper,
  https://arxiv.org/abs/1705.07204

  Args:
    x: source images
    eps: size of adversarial perturbation

  Returns:
    adversarial images
  """
  logits, _ = create_model(x, reuse=True)
  least_likely_class = tf.argmin(logits, 1)
  one_hot_ll_class = tf.one_hot(least_likely_class, NUM_CLASSES)
  x_noise = x + eps / 2 * tf.sign(tf.random_normal(x.shape))
  return step_target_class_adversarial_images(x_noise, eps / 2,
                                              one_hot_ll_class) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:24,代碼來源:eval_on_adversarial.py

示例5: _compute_one_image_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def _compute_one_image_loss(self, keypoints, offset, size, ground_truth, meshgrid_y, meshgrid_x,
                                stride, pshape):
        slice_index = tf.argmin(ground_truth, axis=0)[0]
        ground_truth = tf.gather(ground_truth, tf.range(0, slice_index, dtype=tf.int64))
        ngbbox_y = ground_truth[..., 0] / stride
        ngbbox_x = ground_truth[..., 1] / stride
        ngbbox_h = ground_truth[..., 2] / stride
        ngbbox_w = ground_truth[..., 3] / stride
        class_id = tf.cast(ground_truth[..., 4], dtype=tf.int32)
        ngbbox_yx = ground_truth[..., 0:2] / stride
        ngbbox_yx_round = tf.floor(ngbbox_yx)
        offset_gt = ngbbox_yx - ngbbox_yx_round
        size_gt = ground_truth[..., 2:4] / stride
        ngbbox_yx_round_int = tf.cast(ngbbox_yx_round, tf.int64)
        keypoints_loss = self._keypoints_loss(keypoints, ngbbox_yx_round_int, ngbbox_y, ngbbox_x, ngbbox_h,
                                              ngbbox_w, class_id, meshgrid_y, meshgrid_x, pshape)

        offset = tf.gather_nd(offset, ngbbox_yx_round_int)
        size = tf.gather_nd(size, ngbbox_yx_round_int)
        offset_loss = tf.reduce_mean(tf.abs(offset_gt - offset))
        size_loss = tf.reduce_mean(tf.abs(size_gt - size))
        total_loss = keypoints_loss + 0.1*size_loss + offset_loss
        return total_loss 
開發者ID:Stick-To,項目名稱:CenterNet-tensorflow,代碼行數:25,代碼來源:CenterNet.py

示例6: nn_distance_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def nn_distance_cpu(pc1, pc2):
    '''
    Input:
        pc1: float TF tensor in shape (B,N,C) the first point cloud
        pc2: float TF tensor in shape (B,M,C) the second point cloud
    Output:
        dist1: float TF tensor in shape (B,N) distance from first to second
        idx1: int32 TF tensor in shape (B,N) nearest neighbor from first to second
        dist2: float TF tensor in shape (B,M) distance from second to first
        idx2: int32 TF tensor in shape (B,M) nearest neighbor from second to first
    '''
    N = pc1.get_shape()[1].value
    M = pc2.get_shape()[1].value
    pc1_expand_tile = tf.tile(tf.expand_dims(pc1,2), [1,1,M,1])
    pc2_expand_tile = tf.tile(tf.expand_dims(pc2,1), [1,N,1,1])
    pc_diff = pc1_expand_tile - pc2_expand_tile # B,N,M,C
    pc_dist = tf.reduce_sum(pc_diff ** 2, axis=-1) # B,N,M
    dist1 = tf.reduce_min(pc_dist, axis=2) # B,N
    idx1 = tf.argmin(pc_dist, axis=2) # B,N
    dist2 = tf.reduce_min(pc_dist, axis=1) # B,M
    idx2 = tf.argmin(pc_dist, axis=1) # B,M
    return dist1, idx1, dist2, idx2 
開發者ID:hehefan,項目名稱:PointRNN,代碼行數:24,代碼來源:tf_nndistance_cpu.py

示例7: computeLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def computeLoss(y_query, distances, class_ids, N_classes):#, N_query):

    logits = -1.0*distances

    local_class_ids = tf.argmin(distances, axis = 1)

    y_pred = tf.gather(class_ids, local_class_ids)

    labels = tf.zeros_like(y_query)
    for i,c in enumerate(tf.unstack(class_ids)):
        #print(i)
        mask = tf.expand_dims(tf.cast(tf.equal(y_query,c), tf.int64), axis = 1)
        mask = tf.reshape(mask, [-1])
        labels = labels + mask*(i % N_classes)

    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = labels, logits = logits)
    loss = loss / (N_classes)

    loss = tf.reduce_mean(loss)

    return loss, y_pred 
開發者ID:stanislavfort,項目名稱:gaussian-prototypical-networks,代碼行數:23,代碼來源:cnn6.py

示例8: k_means

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def k_means(image, clusters_num):
    image = tf.squeeze(image)
    print("k_means", image.shape)
    _points = tf.reshape(image, (-1, 1))
    centroids = tf.slice(tf.random_shuffle(_points), [0, 0], [clusters_num, -1])
    points_expanded = tf.expand_dims(_points, 0)

    for i in xrange(80):
        centroids_expanded = tf.expand_dims(centroids, 1)
        distances = tf.reduce_sum(tf.square(tf.subtract(points_expanded, centroids_expanded)), 2)
        assignments = tf.argmin(distances, 0)
        centroids = tf.concat(
            [tf.reduce_mean(tf.gather(_points, tf.reshape(tf.where(tf.equal(assignments, c)), [1, -1])), axis=1) for c
             in
             xrange(clusters_num)], 0)

    centroids = tf.squeeze(centroids)
    centroids = -tf.nn.top_k(-centroids, clusters_num)[0]  # sort
    return centroids 
開發者ID:JianqiangRen,項目名稱:AAMS,代碼行數:21,代碼來源:utils.py

示例9: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def __call__(self, codes):
    """Uses codebook to find nearest neighbor for each code.

    Args:
      codes: A `float`-like `Tensor` containing the latent
        vectors to be compared to the codebook. These are rank-3 with shape
        `[batch_size, latent_size, code_size]`.

    Returns:
      nearest_codebook_entries: The 1-nearest neighbor in Euclidean distance for
        each code in the batch.
      one_hot_assignments: The one-hot vectors corresponding to the matched
        codebook entry for each code in the batch.
    """
    distances = tf.norm(
        tensor=tf.expand_dims(codes, 2) -
        tf.reshape(self.codebook, [1, 1, self.num_codes, self.code_size]),
        axis=3)
    assignments = tf.argmin(input=distances, axis=2)
    one_hot_assignments = tf.one_hot(assignments, depth=self.num_codes)
    nearest_codebook_entries = tf.reduce_sum(
        input_tensor=tf.expand_dims(one_hot_assignments, -1) *
        tf.reshape(self.codebook, [1, 1, self.num_codes, self.code_size]),
        axis=2)
    return nearest_codebook_entries, one_hot_assignments 
開發者ID:GoogleCloudPlatform,項目名稱:ml-on-gcp,代碼行數:27,代碼來源:vq_vae.py

示例10: get_items_to_encode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def get_items_to_encode(self, end_points, data_batched):
    """Outputs a list with format (name, is_image, tensor)"""
    items_to_encode = []
    if 'source' in data_batched:
      items_to_encode.append(('sources', True, self._post_process_image(data_batched.get('source'))))
    generated_targets = end_points['generator_output']
    generated_target_prediction = end_points['discriminator_generated_prediction']
    real_target_prediction = end_points['discriminator_real_prediction']
    targets = data_batched.get('target')
    items_to_encode.append(('targets', True, self._post_process_image(targets)))
    items_to_encode.append(('generated_targets', True, self._post_process_image(generated_targets)))
    items_to_encode.append(('generated_target_prediction', False, generated_target_prediction))
    items_to_encode.append(('real_target_prediction', False, real_target_prediction))

    best_generated_target_i = tf.argmax(tf.squeeze(generated_target_prediction, axis=1))
    worst_real_target_i = tf.argmin(tf.squeeze(real_target_prediction, axis=1))

    items_to_encode.append(
      ('best_generated_target', True, self._post_process_image(generated_targets[best_generated_target_i])))
    items_to_encode.append(('worst_real_target', True, self._post_process_image(targets[worst_real_target_i])))
    return items_to_encode 
開發者ID:jerryli27,項目名稱:TwinGAN,代碼行數:23,代碼來源:image_generation.py

示例11: add_summary_images

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def add_summary_images(self, num=9):
    """Visualize source images and nearest neighbors from target."""
    source_ims = self.source_gen.get_batch(bs=num, reuse=True)
    vis_images = self.add_summary_montage(source_ims, 'source_ims', num)

    target_ims = self.target_gen.get_batch()
    _ = self.add_summary_montage(target_ims, 'target_ims', num)

    c_xy = self.basedist(source_ims, target_ims)  # pairwise cost
    idx = tf.argmin(c_xy, axis=1)  # find nearest neighbors
    matches = tf.gather(target_ims, idx)
    vis_matches = self.add_summary_montage(matches, 'neighbors_ims', num)

    vis_both = tf.concat([vis_images, vis_matches], axis=1)
    tf.summary.image('matches_ims', vis_both)

    return 
開發者ID:google,項目名稱:wasserstein-dist,代碼行數:19,代碼來源:wasserstein.py

示例12: cf_nn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def cf_nn(x, t):
    It = tf.where(tf.equal(t, 1))[:, 0]
    Ic = tf.where(tf.equal(t, 0))[:, 0]

    x_c = tf.gather(x, Ic)
    x_t = tf.gather(x, It)

    D = pdist2(x_c, x_t)

    nn_t = tf.gather(Ic, tf.argmin(D, 0))
    nn_c = tf.gather(It, tf.argmin(D, 1))

    return tf.stop_gradient(nn_t), tf.stop_gradient(nn_c)


# SOURCE: https://github.com/clinicalml/cfrnet, MIT-License 
開發者ID:d909b,項目名稱:perfect_match,代碼行數:18,代碼來源:pehe_loss.py

示例13: predict_labels

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def predict_labels(logits):
    """ Predict self labels
    logits: Logits from inference(). [FLAGS.batch_size, FLAGS.max_doc_length, FLAGS.target_label_size]
    Return [FLAGS.batch_size, FLAGS.max_doc_length, FLAGS.target_label_size]
    """
    with tf.variable_scope('PredictLabels') as scope:
        # Reshape logits for argmax and argmin
        logits = tf.reshape(logits, [-1, FLAGS.target_label_size]) # [FLAGS.batch_size*FLAGS.max_doc_length, FLAGS.target_label_size]
        # Get labels predicted using these logits
        logits_argmax = tf.argmax(logits, 1) # [FLAGS.batch_size*FLAGS.max_doc_length]
        logits_argmax = tf.reshape(logits_argmax, [-1, FLAGS.max_doc_length])  # [FLAGS.batch_size, FLAGS.max_doc_length]
        logits_argmax = tf.expand_dims(logits_argmax, 2) # [FLAGS.batch_size, FLAGS.max_doc_length, 1]
        
        logits_argmin = tf.argmin(logits, 1) # [FLAGS.batch_size*FLAGS.max_doc_length]
        logits_argmin = tf.reshape(logits_argmin, [-1, FLAGS.max_doc_length])  # [FLAGS.batch_size, FLAGS.max_doc_length]
        logits_argmin = tf.expand_dims(logits_argmin, 2) # [FLAGS.batch_size, FLAGS.max_doc_length, 1]
        
        # Convert argmin and argmax to labels, works only if FLAGS.target_label_size = 2
        labels = tf.concat(2, [logits_argmin, logits_argmax]) # [FLAGS.batch_size, FLAGS.max_doc_length, FLAGS.target_label_size]
        dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
        labels = tf.cast(labels, dtype)
        
        return labels 
開發者ID:EdinburghNLP,項目名稱:Refresh,代碼行數:25,代碼來源:model_docsum.py

示例14: multilabel_image_to_class

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def multilabel_image_to_class(label_image: tf.Tensor, classes_file: str) -> tf.Tensor:
    """
    Combines image annotations with classes info of the txt file to create the input label for the training.

    :param label_image: annotated image [H,W,Ch] or [B,H,W,Ch] (Ch = color channels)
    :param classes_file: the filename of the txt file containing the class info
    :return: [H,W,Cl] or [B,H,W,Cl] (Cl = number of classes)
    """
    classes_color_values, colors_labels = get_classes_color_from_file_multilabel(classes_file)
    # Convert label_image [H,W,3] to the classes [H,W,C],int32 according to the classes [C,3]
    with tf.name_scope('LabelAssign'):
        if len(label_image.get_shape()) == 3:
            diff = tf.cast(label_image[:, :, None, :], tf.float32) - tf.constant(classes_color_values[None, None, :, :])  # [H,W,C,3]
        elif len(label_image.get_shape()) == 4:
            diff = tf.cast(label_image[:, :, :, None, :], tf.float32) - tf.constant(
                classes_color_values[None, None, None, :, :])  # [B,H,W,C,3]
        else:
            raise NotImplementedError('Length is : {}'.format(len(label_image.get_shape())))

        pixel_class_diff = tf.reduce_sum(tf.square(diff), axis=-1)  # [H,W,C] or [B,H,W,C]
        class_label = tf.argmin(pixel_class_diff, axis=-1)  # [H,W] or [B,H,W]

        return tf.gather(colors_labels, class_label) > 0 
開發者ID:dhlab-epfl,項目名稱:dhSegment,代碼行數:25,代碼來源:labels.py

示例15: nn_distance_cpu

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmin [as 別名]
def nn_distance_cpu(pc1, pc2):
    '''
    Input:
        pc1: float TF tensor in shape (B,N,C) the first point cloud
        pc2: float TF tensor in shape (B,M,C) the second point cloud
    Output:
        dist1: float TF tensor in shape (B,N) distance from first to second
        idx1: int32 TF tensor in shape (B,N) nearest neighbor from first to second
        dist2: float TF tensor in shape (B,M) distance from second to first
        idx2: int32 TF tensor in shape (B,M) nearest neighbor from second to first
    '''
    N = pc1.get_shape()[1].value
    M = pc2.get_shape()[1].value
    pc1_expand_tile = tf.tile(tf.expand_dims(pc1, 2), [1, 1, M, 1])
    pc2_expand_tile = tf.tile(tf.expand_dims(pc2, 1), [1, N, 1, 1])
    pc_diff = pc1_expand_tile - pc2_expand_tile  # B,N,M,C
    pc_dist = tf.reduce_sum(pc_diff ** 2, axis=-1)  # B,N,M
    dist1 = tf.reduce_min(pc_dist, axis=2)  # B,N
    idx1 = tf.argmin(pc_dist, axis=2)  # B,N
    dist2 = tf.reduce_min(pc_dist, axis=1)  # B,M
    idx2 = tf.argmin(pc_dist, axis=1)  # B,M
    return dist1, idx1, dist2, idx2 
開發者ID:kujason,項目名稱:monopsr,代碼行數:24,代碼來源:tf_nndistance_cpu.py


注:本文中的tensorflow.argmin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。