當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.argmax方法代碼示例

本文整理匯總了Python中tensorflow.argmax方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.argmax方法的具體用法?Python tensorflow.argmax怎麽用?Python tensorflow.argmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.argmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: binary_refinement

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def binary_refinement(sess,Best_X_adv,
                      X_adv, Y, ALPHA, ub, lb, model, dataset='cifar'):
    num_samples = np.shape(X_adv)[0]
    print(dataset)
    if(dataset=="mnist"):
        X_place = tf.placeholder(tf.float32, shape=[1, 1, 28, 28])
    else:
        X_place = tf.placeholder(tf.float32, shape=[1, 3, 32, 32])

    pred = model(X_place)
    for i in range(num_samples):
        logits_op = sess.run(pred,feed_dict={X_place:X_adv[i:i+1,:,:,:]})
        if(not np.argmax(logits_op) == np.argmax(Y[i,:])):
            # Success, increase alpha
            Best_X_adv[i,:,:,:] = X_adv[i,:,:,]
            lb[i] = ALPHA[i,0]
        else:
            ub[i] = ALPHA[i,0]
        ALPHA[i] = 0.5*(lb[i] + ub[i])
    return ALPHA, Best_X_adv 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:adaptive_attacks.py

示例2: model_argmax

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def model_argmax(sess, x, predictions, samples, feed=None):
    """
    Helper function that computes the current class prediction
    :param sess: TF session
    :param x: the input placeholder
    :param predictions: the model's symbolic output
    :param samples: numpy array with input samples (dims must match x)
    :param feed: An optional dictionary that is appended to the feeding
             dictionary before the session runs. Can be used to feed
             the learning phase of a Keras model for instance.
    :return: the argmax output of predictions, i.e. the current predicted class
    """
    feed_dict = {x: samples}
    if feed is not None:
        feed_dict.update(feed)
    probabilities = sess.run(predictions, feed_dict)

    if samples.shape[0] == 1:
        return np.argmax(probabilities)
    else:
        return np.argmax(probabilities, axis=1) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:23,代碼來源:utils_tf.py

示例3: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 231, 231
    eval_height, eval_width = 281, 281
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = overfeat.overfeat(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = overfeat.overfeat(eval_inputs, is_training=False,
                                    spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:overfeat_test.py

示例4: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 300, 400
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = alexnet.alexnet_v2(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
                                     spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 4, 7, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:alexnet_test.py

示例5: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 256, 256
    num_classes = 1000
    with self.test_session():
      train_inputs = tf.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = vgg.vgg_a(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      tf.get_variable_scope().reuse_variables()
      eval_inputs = tf.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = vgg.vgg_a(eval_inputs, is_training=False,
                            spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = tf.reduce_mean(logits, [1, 2])
      predictions = tf.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:vgg_test.py

示例6: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_resnet_v2(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_resnet_v2(eval_inputs,
                                                num_classes,
                                                is_training=False,
                                                reuse=True)
      predictions = tf.argmax(logits, 1)
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inception_resnet_v2_test.py

示例7: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    mobilenet_v1.mobilenet_v1(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes,
                                          reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:mobilenet_v1_test.py

示例8: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_v4(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_v4(eval_inputs,
                                         num_classes,
                                         is_training=False,
                                         reuse=True)
      predictions = tf.argmax(logits, 1)
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inception_v4_test.py

示例9: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v2(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_v2_test.py

示例10: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v3(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v3(eval_inputs, num_classes,
                                       is_training=False, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inception_v3_test.py

示例11: testTrainEvalWithReuse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v1(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_v1_test.py

示例12: sample_action

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def sample_action(self, logits, sampling_dim,
                    act_dim, act_type, greedy=False):
    """Sample an action from a distribution."""
    if self.env_spec.is_discrete(act_type):
      if greedy:
        act = tf.argmax(logits, 1)
      else:
        act = tf.reshape(tf.multinomial(logits, 1), [-1])
    elif self.env_spec.is_box(act_type):
      means = logits[:, :sampling_dim / 2]
      std = logits[:, sampling_dim / 2:]
      if greedy:
        act = means
      else:
        batch_size = tf.shape(logits)[0]
        act = means + std * tf.random_normal([batch_size, act_dim])
    else:
      assert False

    return act 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:policy.py

示例13: sigmoid_accuracy_one_hot

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None):
  """Calculate accuracy for a set, given one-hot labels and logits.

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1, num-classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    accuracy (scalar), weights
  """
  with tf.variable_scope("sigmoid_accuracy_one_hot", values=[logits, labels]):
    del weights_fn
    predictions = tf.nn.sigmoid(logits)
    labels = tf.argmax(labels, -1)
    predictions = tf.argmax(predictions, -1)
    _, accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    return accuracy, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:metrics.py

示例14: sigmoid_precision_one_hot

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def sigmoid_precision_one_hot(logits, labels, weights_fn=None):
  """Calculate precision for a set, given one-hot labels and logits.

  Predictions are converted to one-hot,
  as predictions[example][arg-max(example)] = 1

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1, num-classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    precision (scalar), weights
  """
  with tf.variable_scope("sigmoid_precision_one_hot", values=[logits, labels]):
    del weights_fn
    num_classes = logits.shape[-1]
    predictions = tf.nn.sigmoid(logits)
    predictions = tf.argmax(predictions, -1)
    predictions = tf.one_hot(predictions, num_classes)
    _, precision = tf.metrics.precision(labels=labels, predictions=predictions)
    return precision, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics.py

示例15: sigmoid_recall_one_hot

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import argmax [as 別名]
def sigmoid_recall_one_hot(logits, labels, weights_fn=None):
  """Calculate recall for a set, given one-hot labels and logits.

  Predictions are converted to one-hot,
  as predictions[example][arg-max(example)] = 1

  Args:
    logits: Tensor of size [batch-size, o=1, p=1, num-classes]
    labels: Tensor of size [batch-size, o=1, p=1, num-classes]
    weights_fn: Function that takes in labels and weighs examples (unused)
  Returns:
    recall (scalar), weights
  """
  with tf.variable_scope("sigmoid_recall_one_hot", values=[logits, labels]):
    del weights_fn
    num_classes = logits.shape[-1]
    predictions = tf.nn.sigmoid(logits)
    predictions = tf.argmax(predictions, -1)
    predictions = tf.one_hot(predictions, num_classes)
    _, recall = tf.metrics.recall(labels=labels, predictions=predictions)
    return recall, tf.constant(1.0) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:metrics.py


注:本文中的tensorflow.argmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。