當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.all_variables方法代碼示例

本文整理匯總了Python中tensorflow.all_variables方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.all_variables方法的具體用法?Python tensorflow.all_variables怎麽用?Python tensorflow.all_variables使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.all_variables方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: restore_best_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def restore_best_model(self):
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring bestmodel for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print("Initializing all variables...")
    sess.run(tf.initialize_all_variables())

    # Restore the best model from eval dir
    saver = tf.train.Saver([v for v in tf.all_variables() if "Adagrad" not in v.name])
    print("Restoring all non-adagrad variables from best model in eval dir...")
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print("Restored %s." % curr_ckpt)

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(FLAGS.log_root, "train", new_model_name)
    print("Saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print("Saved.")
    exit() 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:25,代碼來源:run_summarization.py

示例2: build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def build_model(sess, embedding_dim, batch_size):
    model = CondGAN(
        lr_imsize=cfg.TEST.LR_IMSIZE,
        hr_lr_ratio=int(cfg.TEST.HR_IMSIZE/cfg.TEST.LR_IMSIZE))

    embeddings = tf.placeholder(
        tf.float32, [batch_size, embedding_dim],
        name='conditional_embeddings')
    with pt.defaults_scope(phase=pt.Phase.test):
        with tf.variable_scope("g_net"):
            c = sample_encoded_context(embeddings, model)
            z = tf.random_normal([batch_size, cfg.Z_DIM])
            fake_images = model.get_generator(tf.concat(1, [c, z]))
        with tf.variable_scope("hr_g_net"):
            hr_c = sample_encoded_context(embeddings, model)
            hr_fake_images = model.hr_get_generator(fake_images, hr_c)

    ckt_path = cfg.TEST.PRETRAINED_MODEL
    if ckt_path.find('.ckpt') != -1:
        print("Reading model parameters from %s" % ckt_path)
        saver = tf.train.Saver(tf.all_variables())
        saver.restore(sess, ckt_path)
    else:
        print("Input a valid model path.")
    return embeddings, fake_images, hr_fake_images 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:27,代碼來源:demo.py

示例3: build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def build_model(self, sess):
        self.init_opt()
        sess.run(tf.initialize_all_variables())

        if len(self.model_path) > 0:
            print("Reading model parameters from %s" % self.model_path)
            restore_vars = tf.all_variables()
            # all_vars = tf.all_variables()
            # restore_vars = [var for var in all_vars if
            #                 var.name.startswith('g_') or
            #                 var.name.startswith('d_')]
            saver = tf.train.Saver(restore_vars)
            saver.restore(sess, self.model_path)

            istart = self.model_path.rfind('_') + 1
            iend = self.model_path.rfind('.')
            counter = self.model_path[istart:iend]
            counter = int(counter)
        else:
            print("Created model with fresh parameters.")
            counter = 0
        return counter 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:24,代碼來源:trainer.py

示例4: build_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def build_model(self, sess):
        self.init_opt()

        sess.run(tf.initialize_all_variables())
        if len(self.model_path) > 0:
            print("Reading model parameters from %s" % self.model_path)
            all_vars = tf.trainable_variables()
            # all_vars = tf.all_variables()
            restore_vars = []
            for var in all_vars:
                if var.name.startswith('g_') or var.name.startswith('d_'):
                    restore_vars.append(var)
                    # print(var.name)
            saver = tf.train.Saver(restore_vars)
            saver.restore(sess, self.model_path)

            istart = self.model_path.rfind('_') + 1
            iend = self.model_path.rfind('.')
            counter = self.model_path[istart:iend]
            counter = int(counter)
        else:
            print("Created model with fresh parameters.")
            counter = 0
        return counter 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:26,代碼來源:trainer.py

示例5: typeAndWikiDescBasedColdEmbExp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def typeAndWikiDescBasedColdEmbExp(self, ckptName="FigerModel-20001"):
        ''' Train cold embeddings using wiki desc loss
        '''
        saver = tf.train.Saver(var_list=tf.all_variables())

        print("Loading Model ... ")
        if ckptName == None:
            print("Given CKPT Name")
            sys.exit()
        else:
            load_status = self.fm.loadSpecificCKPT(
              saver=saver, checkpoint_dir=self.fm.checkpoint_dir,
              ckptName=ckptName, attrs=self.fm._attrs)
        if not load_status:
            print("No model to load. Exiting")
            sys.exit(0)

        self._makeDescLossGraph()
        self.fm.sess.run(tf.initialize_variables(self.allcoldvars))
        self._trainColdEmbFromTypesAndDesc(epochsToTrain=5)

        self.runEval()

    # EVALUATION FOR COLD START WHEN INITIALIZING COLD EMB FROM WIKI DESC ENCODING 
開發者ID:nitishgupta,項目名稱:neural-el,代碼行數:26,代碼來源:coldStart.py

示例6: restore_map

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def restore_map(self, from_detection_checkpoint=True):
    """Returns a map of variables to load from a foreign checkpoint.

    See parent class for details.

    Args:
      from_detection_checkpoint: whether to restore from a full detection
        checkpoint (with compatible variable names) or to restore from a
        classification checkpoint for initialization prior to training.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.all_variables():
      if variable.op.name.startswith(self._extract_features_scope):
        var_name = variable.op.name
        if not from_detection_checkpoint:
          var_name = (re.split('^' + self._extract_features_scope + '/',
                               var_name)[-1])
        variables_to_restore[var_name] = variable
    return variables_to_restore 
開發者ID:maartensukel,項目名稱:garbage-object-detection-tensorflow,代碼行數:25,代碼來源:ssd_meta_arch.py

示例7: train_neural_network

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def train_neural_network():
	logits, last_state, _, _, _ = neural_network()
	targets = tf.reshape(output_targets, [-1])
	loss = tf.nn.seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)], len(words))
	cost = tf.reduce_mean(loss)
	learning_rate = tf.Variable(0.0, trainable=False)
	tvars = tf.trainable_variables()
	grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), 5)
	optimizer = tf.train.AdamOptimizer(learning_rate)
	train_op = optimizer.apply_gradients(zip(grads, tvars))

	with tf.Session() as sess:
		sess.run(tf.initialize_all_variables())
		saver = tf.train.Saver(tf.all_variables())

		for epoch in range(50):
			sess.run(tf.assign(learning_rate, 0.002 * (0.97 ** epoch)))
			n = 0
			for batche in range(n_chunk):
				train_loss, _ , _ = sess.run([cost, last_state, train_op], feed_dict={input_data: x_batches[n], output_targets: y_batches[n]})
				n += 1
				print(epoch, batche, train_loss)
			if epoch % 7 == 0:
				saver.save(sess, 'poetry.module', global_step=epoch) 
開發者ID:luyishisi,項目名稱:tensorflow,代碼行數:26,代碼來源:train.py

示例8: _testScope

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def _testScope(self, factory, prefix="prefix", use_outer_scope=True):
    with self.test_session(use_gpu=True, graph=tf.Graph()):
      if use_outer_scope:
        with tf.variable_scope(prefix) as scope:
          factory(scope)
      else:
        factory(prefix)

      # check that all the variables names starts
      # with the proper scope.
      tf.global_variables_initializer()
      all_vars = tf.all_variables()
      prefix = prefix or "RNN"
      scope_vars = [v for v in all_vars if v.name.startswith(prefix + "/")]
      tf.logging.info("RNN with scope: %s (%s)"
                      % (prefix, "scope" if use_outer_scope else "str"))
      for v in scope_vars:
        tf.logging.info(v.name)
      self.assertEqual(len(scope_vars), len(all_vars)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:rnn_test.py

示例9: testLocalInitOp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def testLocalInitOp(self):
    logdir = _test_dir("default_local_init_op")
    with tf.Graph().as_default():
      # A local variable.
      v = tf.Variable([1.0, 2.0, 3.0],
                      trainable=False,
                      collections=[tf.GraphKeys.LOCAL_VARIABLES])

      # An entity which is initialized through a TABLE_INITIALIZER.
      w = tf.Variable([4, 5, 6], trainable=False, collections=[])
      tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, w.initializer)

      # This shouldn't add a variable to the VARIABLES collection responsible
      # for variables that are saved/restored from checkpoints.
      self.assertEquals(len(tf.all_variables()), 0)

      # Suppress normal variable inits to make sure the local one is
      # initialized via local_init_op.
      sv = tf.train.Supervisor(logdir=logdir, init_op=None)
      sess = sv.prepare_or_wait_for_session("")
      self.assertAllClose([1.0, 2.0, 3.0], sess.run(v))
      self.assertAllClose([4, 5, 6], sess.run(w))
      sv.stop() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:supervisor_test.py

示例10: testLocalInitOpForNonChief

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def testLocalInitOpForNonChief(self):
    logdir = _test_dir("default_local_init_op_non_chief")
    with tf.Graph().as_default():
      with tf.device("/job:localhost"):
        # A local variable.
        v = tf.Variable([1.0, 2.0, 3.0],
                        trainable=False,
                        collections=[tf.GraphKeys.LOCAL_VARIABLES])
        # This shouldn't add a variable to the VARIABLES collection responsible
        # for variables that are saved/restored from checkpoints.
        self.assertEquals(len(tf.all_variables()), 0)

      # Suppress normal variable inits to make sure the local one is
      # initialized via local_init_op.
      sv = tf.train.Supervisor(logdir=logdir, init_op=None, is_chief=False)
      sess = sv.prepare_or_wait_for_session("")
      self.assertAllClose([1.0, 2.0, 3.0], sess.run(v))
      sv.stop() 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:supervisor_test.py

示例11: testPrepareSessionWithReadyNotReadyForLocal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def testPrepareSessionWithReadyNotReadyForLocal(self):
    with tf.Graph().as_default():
      v = tf.Variable(1, name="v")
      w = tf.Variable(
          v,
          trainable=False,
          collections=[tf.GraphKeys.LOCAL_VARIABLES],
          name="w")
      with self.test_session():
        self.assertEqual(False, tf.is_variable_initialized(v).eval())
        self.assertEqual(False, tf.is_variable_initialized(w).eval())
      sm2 = tf.train.SessionManager(
          ready_op=tf.report_uninitialized_variables(),
          ready_for_local_init_op=tf.report_uninitialized_variables(
              tf.all_variables()),
          local_init_op=w.initializer)
      with self.assertRaisesRegexp(
          RuntimeError,
          "Init operations did not make model ready for local_init"):
        sm2.prepare_session("", init_op=None) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:session_manager_test.py

示例12: _testScope

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def _testScope(self, factory, prefix="prefix", use_outer_scope=True):
    # REMARKS: factory(scope) is a function accepting a scope
    #          as an argument, such scope can be None, a string
    #          or a VariableScope instance.
    with self.test_session(use_gpu=True, graph=tf.Graph()):
      if use_outer_scope:
        with tf.variable_scope(prefix) as scope:
          factory(scope)
      else:
        factory(prefix)

      # check that all the variables names starts with the proper scope.
      tf.global_variables_initializer()
      all_vars = tf.all_variables()
      prefix = prefix or "StackRNN"
      scope_vars = [v for v in all_vars if v.name.startswith(prefix + "/")]
      tf.logging.info("StackRNN with scope: %s (%s)"
                      % (prefix, "scope" if use_outer_scope else "str"))
      for v in scope_vars:
        tf.logging.info(v.name)
      self.assertEqual(len(scope_vars), len(all_vars)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:rnn_test.py

示例13: testAdaptiveGradientClip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def testAdaptiveGradientClip(self):
    with self.test_session() as session:
      x, var, loss, global_step = _setup_model()
      clip_gradients = tf.contrib.layers.adaptive_clipping_fn()
      train = tf.contrib.layers.optimize_loss(loss,
                                              global_step,
                                              learning_rate=0.1,
                                              optimizer="SGD",
                                              clip_gradients=clip_gradients)
      tf.global_variables_initializer().run()
      session.run(train, feed_dict={x: 5})
      var_value, global_step_value = session.run([var, global_step])
      self.assertAlmostEqual(var_value, 9.8916, 4)
      self.assertEqual(global_step_value, 1)
      var_count = 0
      for var in tf.all_variables():
        if var.name.startswith("OptimizeLoss/AdaptiveMaxNorm"):
          var_count += 1
      self.assertEqual(2, var_count) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:optimizers_test.py

示例14: testStochasticVariablesWithConstantInitializer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def testStochasticVariablesWithConstantInitializer(self):
    shape = (10, 20)
    with tf.variable_scope(
        "stochastic_variables",
        custom_getter=sv.make_stochastic_variable_getter(
            dist_cls=dist.NormalWithSoftplusSigma,
            dist_kwargs={"validate_args": True},
            param_initializers={
                "mu": np.ones(shape) * 4.,
                "sigma": np.ones(shape) * 2.
            })):
      v = tf.get_variable("sv")

    for var in tf.all_variables():
      if "mu" in var.name:
        mu_var = var
      if "sigma" in var.name:
        sigma_var = var

    v = tf.convert_to_tensor(v)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      self.assertAllEqual(np.ones(shape) * 4., sess.run(mu_var))
      self.assertAllEqual(np.ones(shape) * 2., sess.run(sigma_var))
      self.assertEqual(shape, sess.run(v).shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:stochastic_variables_test.py

示例15: restore_best_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import all_variables [as 別名]
def restore_best_model():
    """Load bestmodel file from eval directory, add variables for adagrad, and save to train directory"""
    tf.logging.info("Restoring best model for training...")

    # Initialize all vars in the model
    sess = tf.Session(config=util.get_config())
    print("Initializing all variables...")
    sess.run(tf.initialize_all_variables())

    # Restore the best model from eval dir
    saver = tf.train.Saver([v for v in tf.all_variables() if "Adagrad" not in v.name])
    print("Restoring all non-adagrad variables from best model in eval dir...")
    curr_ckpt = util.load_ckpt(saver, sess, "eval")
    print("Restored %s." % curr_ckpt)

    # Save this model to train dir and quit
    new_model_name = curr_ckpt.split("/")[-1].replace("bestmodel", "model")
    new_fname = os.path.join(FLAGS.log_root, "train", new_model_name)
    print("Saving model to %s..." % new_fname)
    new_saver = tf.train.Saver()  # this saver saves all variables that now exist, including Adagrad variables
    new_saver.save(sess, new_fname)
    print("Saved.")
    exit() 
開發者ID:IBM,項目名稱:MAX-Text-Summarizer,代碼行數:25,代碼來源:run_summarization.py


注:本文中的tensorflow.all_variables方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。