當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.add_n方法代碼示例

本文整理匯總了Python中tensorflow.add_n方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.add_n方法的具體用法?Python tensorflow.add_n怎麽用?Python tensorflow.add_n使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.add_n方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: finalize_autosummaries

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def finalize_autosummaries():
    global _autosummary_finalized
    if _autosummary_finalized:
        return
    _autosummary_finalized = True
    init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
    with tf.device(None), tf.control_dependencies(None):
        for name, vars in _autosummary_vars.items():
            id = name.replace('/', '_')
            with absolute_name_scope('Autosummary/' + id):
                sum = tf.add_n(vars)
                avg = sum[0] / sum[1]
                with tf.control_dependencies([avg]): # read before resetting
                    reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
                    with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
                        tf.summary.scalar(name, avg)

# Internal helper for creating autosummary accumulators. 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:20,代碼來源:tfutil.py

示例2: _decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _decay(self):
        """L2 weight decay loss."""
        if self.decay_cost is not None:
            return self.decay_cost

        costs = []
        if self.device_name is None:
            for var in tf.trainable_variables():
                if var.op.name.find(r'DW') > 0:
                    costs.append(tf.nn.l2_loss(var))
        else:
            for layer in self.layers:
                for var in layer.params_device[self.device_name].values():
                    if (isinstance(var, tf.Variable) and
                            var.op.name.find(r'DW') > 0):
                        costs.append(tf.nn.l2_loss(var))

        self.decay_cost = tf.multiply(self.hps.weight_decay_rate,
                                      tf.add_n(costs))
        return self.decay_cost 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:22,代碼來源:resnet_tf.py

示例3: fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def fprop(self, x, y, **kwargs):
        weights, loss_objects = safe_zip(*self.terms)
        for weight in weights:
            if isinstance(weight, float):
                continue
            if hasattr(weight, 'ndim'):
                assert weight.ndim == 0
                continue
            raise TypeError("weight of %s is not a type that this function "
                            "knows it can accept yet" % str(weight))
        losses = [loss.fprop(x, y, **kwargs) for loss in loss_objects]
        for loss, loss_object in safe_zip(losses, loss_objects):
            if len(loss.get_shape()) > 0:
                raise ValueError("%s.fprop returned a non-scalar value" %
                                 str(loss_object))
        terms = [weight * loss for weight, loss in safe_zip(weights, losses)]

        return tf.add_n(terms) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:loss.py

示例4: loop_decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def loop_decode(self):
        # decoder_initial_state: Tuple Tensor (c,h) of size [batch_size x cell.state_size]
        # decoder_first_input: Tensor [batch_size x cell.state_size]

        # Loop the decoding process and collect results
        s,i = self.decoder_initial_state,  tf.cast(self.decoder_first_input,tf.float32)
        for step in range(self.seq_length):
            s, i = self.decode(s,i,step)

        # Return to start
        self.positions.append(self.first_city)

        # Stack visited indices
        self.positions=tf.stack(self.positions,axis=1)  # [Batch,seq_length+1]

        # Sum log_softmax over output steps
        self.log_softmax=tf.add_n(self.log_softmax)  # [Batch,seq_length]

        # Stack attending & pointing distribution
        self.attending=tf.stack(self.attending,axis=1) # [Batch,seq_length,seq_length]
        self.pointing=tf.stack(self.pointing,axis=1) # [Batch,seq_length,seq_length]
        
        # Return stacked lists of visited_indices and log_softmax for backprop
        return self.positions,self.log_softmax 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:26,代碼來源:decoder.py

示例5: add_regularizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def add_regularizer(self, cost):
    """Adds L2 regularization for parameters which have it turned on.

    Args:
      cost: float cost before regularization.

    Returns:
      Updated cost optionally including regularization.
    """
    if self.network is None:
      return cost
    regularized_weights = self.network.get_l2_regularized_weights()
    if not regularized_weights:
      return cost
    l2_coeff = self.master.hyperparams.l2_regularization_coefficient
    if l2_coeff == 0.0:
      return cost
    tf.logging.info('[%s] Regularizing parameters: %s', self.name,
                    [w.name for w in regularized_weights])
    l2_costs = [tf.nn.l2_loss(p) for p in regularized_weights]
    return tf.add(cost, l2_coeff * tf.add_n(l2_costs), name='regularizer') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:component.py

示例6: _Apply

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _Apply(self, *args):
    if not self._matrices:
      self._matrices = [
          self._linear_block_factory(self._depth, self._initializer)
          for _ in args]

    if len(self._matrices) != len(args):
      raise ValueError('{} expected {} inputs, but observed {} inputs'.format(
          self.name, len(self._matrices), len(args)))

    if len(args) > 1:
      y = tf.add_n([m(x) for m, x in zip(self._matrices, args)])
    else:
      y = self._matrices[0](args[0])

    return self._act(self._bias(y)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:blocks_std.py

示例7: weight_decay

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def weight_decay(decay_rate, var_list, skip_biases=True):
  """Apply weight decay to vars in var_list."""
  if not decay_rate:
    return 0.

  tf.logging.info("Applying weight decay, decay_rate: %0.5f", decay_rate)

  weight_decays = []
  for v in var_list:
    # Weight decay.
    # This is a heuristic way to detect biases that works for main tf.layers.
    is_bias = len(v.shape.as_list()) == 1 and v.name.endswith("bias:0")
    if not (skip_biases and is_bias):
      with tf.device(v.device):
        v_loss = tf.nn.l2_loss(v)
      weight_decays.append(v_loss)

  return tf.add_n(weight_decays) * decay_rate 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:optimize.py

示例8: average_sharded_losses

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def average_sharded_losses(sharded_losses):
  """Average losses across datashards.

  Args:
    sharded_losses: list<dict<str loss_name, Tensor loss>>. The loss
      can be a single Tensor or a 2-tuple (numerator and denominator).

  Returns:
    losses: dict<str loss_name, Tensor avg_loss>
  """
  losses = {}
  for loss_name in sorted(sharded_losses[0]):
    all_shards = [shard_losses[loss_name] for shard_losses in sharded_losses]
    if isinstance(all_shards[0], tuple):
      sharded_num, sharded_den = zip(*all_shards)
      mean_loss = (
          tf.add_n(sharded_num) / tf.maximum(
              tf.cast(1.0, sharded_den[0].dtype), tf.add_n(sharded_den)))
    else:
      mean_loss = tf.reduce_mean(all_shards)

    losses[loss_name] = mean_loss
  return losses 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:25,代碼來源:t2t_model.py

示例9: _grad_sparsity

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _grad_sparsity(self):
    """Gradient sparsity."""
    # If the sparse minibatch gradient has 10 percent of its entries
    # non-zero, its sparsity is 0.1.
    # The norm of dense gradient averaged from full dataset
    # are roughly estimated norm of minibatch
    # sparse gradient norm * sqrt(sparsity)
    # An extension maybe only correct the sparse blob.
    non_zero_cnt = tf.add_n([tf.count_nonzero(g) for g in self._grad])
    all_entry_cnt = tf.add_n([tf.size(g) for g in self._grad])
    self._sparsity = tf.cast(non_zero_cnt, self._grad[0].dtype)
    self._sparsity /= tf.cast(all_entry_cnt, self._grad[0].dtype)
    avg_op = self._moving_averager.apply([self._sparsity,])
    with tf.control_dependencies([avg_op]):
      self._sparsity_avg = self._moving_averager.average(self._sparsity)
    return avg_op 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:yellowfin.py

示例10: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:26,代碼來源:value_functions.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def __init__(self, state_size, action_size, lr,
               name, n_h1=400, n_h2=300, global_name='global'):

    self.state_size = state_size
    self.action_size = action_size
    self.name = name
    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.optimizer = tf.train.AdamOptimizer(lr)
    self.input_s, self.input_a, self.advantage, self.target_v, self.policy, self.value, self.action_est, self.model_variables = self._build_network(
        name)

    # 0.5, 0.2, 1.0
    self.value_loss = 0.5 * tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value, [-1])))
    self.entropy_loss = 1.0 * tf.reduce_sum(self.policy * tf.log(self.policy))
    self.policy_loss = 1.0 * tf.reduce_sum(-tf.log(self.action_est) * self.advantage)
    self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.model_variables])
    # self.loss = 0.5 * self.value_loss + self.policy_loss + 0.2 * self.entropy_loss
    self.loss = self.value_loss + self.policy_loss + self.entropy_loss
    self.gradients = tf.gradients(self.loss, self.model_variables)
    if name != global_name:
      self.var_norms = tf.global_norm(self.model_variables)
      global_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, global_name)
      self.apply_gradients = self.optimizer.apply_gradients(zip(self.gradients, global_variables)) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:27,代碼來源:ac_net.py

示例12: _build_policy_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _build_policy_net(self):
    """Build policy network"""
    with tf.variable_scope(self.scope):
      self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
      self.action = tf.placeholder(tf.int32, [None])
      self.target = tf.placeholder(tf.float32, [None])

      layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu)
      layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu)

      self.action_values = tf_utils.fc(layer_2, self.action_size)
      action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0)
      self.action_prob = tf.nn.softmax(self.action_values)
      self.action_value_pred = tf.reduce_sum(self.action_prob * action_mask, 1)

      # l2 regularization
      self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables()  ]) 
      self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * self.target)

      self.loss = self.pg_loss + 0.002 * self.l2_loss
      self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
      self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:24,代碼來源:reinforce.py

示例13: _build_policy_net

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _build_policy_net(self):
    """Build policy network"""
    with tf.variable_scope(self.scope):
      self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
      self.action = tf.placeholder(tf.int32, [None])
      self.target = tf.placeholder(tf.float32, [None])

      layer_1 = tf_utils.fc(self.state_input, self.n_hidden_1, tf.nn.relu)
      layer_2 = tf_utils.fc(layer_1, self.n_hidden_2, tf.nn.relu)

      self.value = tf_utils.fc(layer_2, 1)

      self.action_values = tf_utils.fc(layer_2, self.action_size)
      action_mask = tf.one_hot(self.action, self.action_size, 1.0, 0.0)
      self.action_value_pred = tf.reduce_sum(tf.nn.softmax(self.action_values) * action_mask, 1)
      
      self.action_probs = tf.nn.softmax(self.action_values)
      self.value_loss = tf.reduce_mean(tf.square(self.target - self.value))
      self.pg_loss = tf.reduce_mean(-tf.log(self.action_value_pred) * (self.target - self.value))
      self.l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables()  ]) 
      self.loss = self.pg_loss + 5*self.value_loss + 0.002 * self.l2_loss
      
      self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr)
      self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step()) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:26,代碼來源:reinforce_w_baseline.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def __init__(self, state_size, action_size, lr, n_h1=400, n_h2=300, tau=0.001):
    self.state_size = state_size
    self.action_size = action_size
    self.optimizer = tf.train.AdamOptimizer(lr)
    self.tau = tau

    self.n_h1 = n_h1
    self.n_h2 = n_h2

    self.input_s, self.action, self.critic_variables, self.q_value = self._build_network("critic")
    self.input_s_target, self.action_target, self.critic_variables_target, self.q_value_target = self._build_network("critic_target")

    self.target = tf.placeholder(tf.float32, [None])
    self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.critic_variables])
    self.loss = tf.reduce_mean(tf.square(self.target - self.q_value)) + 0.01*self.l2_loss
    self.optimize = self.optimizer.minimize(self.loss)
    self.update_target_op = [self.critic_variables_target[i].assign(tf.multiply(self.critic_variables[i], self.tau) + tf.multiply(self.critic_variables_target[i], 1 - self.tau)) for i in range(len(self.critic_variables))]
    self.action_gradients = tf.gradients(self.q_value, self.action) 
開發者ID:yrlu,項目名稱:reinforcement_learning,代碼行數:20,代碼來源:critic.py

示例15: _build_optimizer

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add_n [as 別名]
def _build_optimizer(self):
        '''
        Builds the training-relevant part of the graph.
        '''

        with tf.name_scope('optimizer'):
            # Create a training step counter.
            global_step = tf.Variable(0, trainable=False, name='global_step')
            # Create placeholder for the learning rate.
            learning_rate = tf.placeholder(dtype=tf.float32, shape=[], name='learning_rate')
            # Compute the regularizatin loss.
            regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # This is a list of the individual loss values, so we still need to sum them up.
            regularization_loss = tf.add_n(regularization_losses, name='regularization_loss') # Scalar
            # Compute the total loss.
            approximation_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=self.fcn8s_output), name='approximation_loss') # Scalar
            total_loss = tf.add(approximation_loss, regularization_loss, name='total_loss')
            # Compute the gradients and apply them.
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, name='adam_optimizer')
            train_op = optimizer.minimize(total_loss, global_step=global_step, name='train_op')

        return total_loss, train_op, learning_rate, global_step 
開發者ID:pierluigiferrari,項目名稱:fcn8s_tensorflow,代碼行數:23,代碼來源:fcn8s_tensorflow.py


注:本文中的tensorflow.add_n方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。