本文整理匯總了Python中tensorflow.add方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.add方法的具體用法?Python tensorflow.add怎麽用?Python tensorflow.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _inv_preemphasis
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def _inv_preemphasis(x):
N = tf.shape(x)[0]
i = tf.constant(0)
W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)
def condition(i, y):
return tf.less(i, N)
def body(i, y):
tmp = tf.slice(x, [0], [i + 1])
tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
y = hparams.preemphasis * y + tmp
i = tf.add(i, 1)
return [i, y]
final = tf.while_loop(condition, body, [i, W])
y = final[1]
return y
示例2: _variable_with_weight_decay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
var = _variable_on_cpu(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
示例3: accum_val_ops
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def accum_val_ops(outputs, names, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs to compute AP for action prediction.
Args:
outputs : List of scalar ops to summarize.
names : Name of the scalar ops.
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
outs = []
if N >= 0:
outputs = outputs[:N]
for i in range(len(outputs[0])):
scalar = np.array(map(lambda x: x[i], outputs))
assert(scalar.ndim == 1)
add_value_to_summary(metric_summary, names[i], np.mean(scalar),
tag_str='{:>27s}: [{:s}]: %f'.format(names[i], ''))
outs.append(np.mean(scalar))
return outs
示例4: add_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def add_regularizer(self, cost):
"""Adds L2 regularization for parameters which have it turned on.
Args:
cost: float cost before regularization.
Returns:
Updated cost optionally including regularization.
"""
if self.network is None:
return cost
regularized_weights = self.network.get_l2_regularized_weights()
if not regularized_weights:
return cost
l2_coeff = self.master.hyperparams.l2_regularization_coefficient
if l2_coeff == 0.0:
return cost
tf.logging.info('[%s] Regularizing parameters: %s', self.name,
[w.name for w in regularized_weights])
l2_costs = [tf.nn.l2_loss(p) for p in regularized_weights]
return tf.add(cost, l2_coeff * tf.add_n(l2_costs), name='regularizer')
示例5: _variable_with_weight_decay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev=stddev))
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
示例6: l1_l2_regularizer
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
"""Define a L1L2 regularizer.
Args:
weight_l1: scale the L1 loss by this factor.
weight_l2: scale the L2 loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.name_scope(scope, 'L1L2Regularizer', [tensor]):
weight_l1_t = tf.convert_to_tensor(weight_l1,
dtype=tensor.dtype.base_dtype,
name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2,
dtype=tensor.dtype.base_dtype,
name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(tensor),
name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
return regularizer
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
scale = 0.1):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder(tf.float32)
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights
# model
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
self.weights['w1']),
self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# cost
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
示例9: simulate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def simulate(self, action):
with tf.name_scope("environment/simulate"): # Do we need this?
initializer = (tf.zeros_like(self._observ),
tf.fill((len(self),), 0.0), tf.fill((len(self),), False))
def not_done_step(a, _):
reward, done = self._batch_env.simulate(action)
with tf.control_dependencies([reward, done]):
# TODO(piotrmilos): possibly ignore envs with done
r0 = tf.maximum(a[0], self._batch_env.observ)
r1 = tf.add(a[1], reward)
r2 = tf.logical_or(a[2], done)
return (r0, r1, r2)
simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
initializer=initializer, parallel_iterations=1,
infer_shape=False)
simulate_ret = [ret[-1, ...] for ret in simulate_ret]
with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2])
示例10: add_scope
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def add_scope(scope=None, scope_fn=None):
"""Return a decorator which add a TF name/variable scope to a function.
Note that the function returned by the decorator accept an additional 'name'
parameter, which can overwrite the name scope given when the function is
created.
Args:
scope (str): name of the scope. If None, the function name is used.
scope_fn (fct): Either tf.name_scope or tf.variable_scope
Returns:
fct: the add_scope decorator
"""
def decorator(f):
@functools.wraps(f)
def decorated(*args, **kwargs):
name = kwargs.pop("name", None) # Python 2 hack for keyword only args
with scope_fn(name or scope or f.__name__):
return f(*args, **kwargs)
return decorated
return decorator
示例11: get_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def get_loss(predicted_transformation, batch_size, template_pointclouds_pl, source_pointclouds_pl):
with tf.variable_scope('loss') as LossEvaluation:
predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])
# with tf.variable_scope('quat_normalization') as norm:
norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
norm_predicted_quat = tf.sqrt(norm_predicted_quat)
norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
norm_predicted_quat = tf.add(norm_predicted_quat,const)
predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)
transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat,predicted_position)
#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
return loss
示例12: get_loss_b
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def get_loss_b(self,predicted_transformation,batch_size,template_pointclouds_pl,source_pointclouds_pl):
with tf.variable_scope('loss') as LossEvaluation:
predicted_position = tf.slice(predicted_transformation,[0,0],[batch_size,3])
predicted_quat = tf.slice(predicted_transformation,[0,3],[batch_size,4])
# with tf.variable_scope('quat_normalization') as norm:
norm_predicted_quat = tf.reduce_sum(tf.square(predicted_quat),1)
norm_predicted_quat = tf.sqrt(norm_predicted_quat)
norm_predicted_quat = tf.reshape(norm_predicted_quat,(batch_size,1))
const = tf.constant(0.0000001,shape=(batch_size,1),dtype=tf.float32)
norm_predicted_quat = tf.add(norm_predicted_quat,const)
predicted_norm_quat = tf.divide(predicted_quat,norm_predicted_quat)
transformed_predicted_point_cloud = helper.transformation_quat_tensor(source_pointclouds_pl, predicted_norm_quat, predicted_position)
# Use 1024 Points to find loss.
#loss = tf_util_loss.earth_mover(template_pointclouds_pl, transformed_predicted_point_cloud)
loss = tf_util_loss.chamfer(template_pointclouds_pl, transformed_predicted_point_cloud)
# loss = 0
return loss
示例13: conv2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def conv2d(x, n_kernel, k_sz, stride=1):
"""convolutional layer with relu activation wrapper
Args:
x: 4d tensor [batch, height, width, channels]
n_kernel: number of kernels (output size)
k_sz: 2d array, kernel size. e.g. [8,8]
stride: stride
Returns
a conv2d layer
"""
W = tf.Variable(tf.random_normal([k_sz[0], k_sz[1], int(x.get_shape()[3]), n_kernel]))
b = tf.Variable(tf.random_normal([n_kernel]))
# - strides[0] and strides[1] must be 1
# - padding can be 'VALID'(without padding) or 'SAME'(zero padding)
# - http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t
conv = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME')
conv = tf.nn.bias_add(conv, b) # add bias term
return tf.nn.relu(conv) # rectified linear unit: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
示例14: conv2d
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def conv2d(x, n_kernel, k_sz, stride=1):
"""convolutional layer with relu activation wrapper
Args:
x: 4d tensor [batch, height, width, channels]
n_kernel: number of kernels (output size)
k_sz: 2d array, kernel size. e.g. [8,8]
stride: stride
Returns
a conv2d layer
"""
W = tf.Variable(tf.random_normal([k_sz[0], k_sz[1], int(x.get_shape()[3]), n_kernel]))
b = tf.Variable(tf.random_normal([n_kernel]))
# - strides[0] and strides[1] must be 1
# - padding can be 'VALID'(without padding) or 'SAME'(zero padding)
# - http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t
conv = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='SAME')
conv = tf.nn.bias_add(conv, b) # add bias term
# rectified linear unit: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
return tf.nn.relu(conv)
示例15: fc
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import add [as 別名]
def fc(x, n_output, scope="fc", activation_fn=None, initializer=None):
"""fully connected layer with relu activation wrapper
Args
x: 2d tensor [batch, n_input]
n_output output size
"""
with tf.variable_scope(scope):
if initializer is None:
# default initialization
W = tf.Variable(tf.random_normal([int(x.get_shape()[1]), n_output]))
b = tf.Variable(tf.random_normal([n_output]))
else:
W = tf.get_variable("W", shape=[int(x.get_shape()[1]), n_output], initializer=initializer)
b = tf.get_variable("b", shape=[n_output],
initializer=tf.constant_initializer(.0, dtype=tf.float32))
fc1 = tf.add(tf.matmul(x, W), b)
if not activation_fn is None:
fc1 = activation_fn(fc1)
return fc1