當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.acos方法代碼示例

本文整理匯總了Python中tensorflow.acos方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.acos方法的具體用法?Python tensorflow.acos怎麽用?Python tensorflow.acos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.acos方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: angle_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def angle_error(gt, pred):
    """
    Average angular error computed by cosine difference
    :param gt: list of ground truth label
    :param pred: list of predicted label
    :return: Average angular error
    """
    vec_gt = angles2vector(gt)
    vec_pred = angles2vector(pred)

    x = K.np.multiply(vec_gt[:, 0], vec_pred[:, 0])
    y = K.np.multiply(vec_gt[:, 1], vec_pred[:, 1])
    z = K.np.multiply(vec_gt[:, 2], vec_pred[:, 2])

    dif = K.np.sum([x, y, z], axis=0) / (tf.norm(vec_gt, axis=1) * tf.norm(vec_pred, axis=1))

    clipped_dif = K.clip(dif, np.float(-1.0), np.float(1.0))
    loss = (tf.acos(clipped_dif) * 180) / np.pi
    return K.mean(loss, axis=-1) 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:21,代碼來源:data_utils.py

示例2: ypr_from_campos

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def ypr_from_campos(cx, cy, cz):
    camDist = math.sqrt(cx * cx + cy * cy + cz * cz)
    cx = cx / camDist
    cy = cy / camDist
    cz = cz / camDist
    t = math.sqrt(cx * cx + cy * cy)
    tx = cx / t
    ty = cy / t
    yaw = math.acos(tx)
    if ty > 0:
        yaw = 2 * math.pi - yaw

    roll = 0
    pitch = math.asin(cz)

    return yaw, pitch, roll 
開發者ID:eldar,項目名稱:differentiable-point-clouds,代碼行數:18,代碼來源:euler.py

示例3: compare_euler_angle_error

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def compare_euler_angle_error(self, net_roll,net_pitch, tar_roll, tar_pitch):
        cx1 = tf.cos(net_roll)
        sx1 = tf.sin(net_roll)
        cy1 = tf.cos(net_pitch)
        sy1 = tf.sin(net_pitch)

        cx2 = tf.cos(tar_roll)
        sx2 = tf.sin(tar_roll)
        cy2 = tf.cos(tar_pitch)
        sy2 = tf.sin(tar_pitch)

        m00 = cy1*cy2 + sy1*sy2
        m11 = cx1*cx2 + cy1*cy2*sx1*sx2 + sx1*sx2*sy1*sy2
        m22 = sx1*sx2 + cx1*cx2*sy1*sy2 + cx1*cx2*cy1*cy2
        self.acos =  ( m00 + m11 + m22 - 1)/2.0 * 0.99999
        return tf.acos(self.acos) 
開發者ID:hku-mars,項目名稱:crossgap_il_rl,代碼行數:18,代碼來源:tf_pid_network.py

示例4: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def call(self, inputs):
        x, y = inputs
        c = K.shape(x)[-1]
        # normalize feature
        x = tf.nn.l2_normalize(x, axis=1)
        # normalize weights
        W = tf.nn.l2_normalize(self.W, axis=0)
        # dot product
        logits = x @ W
        # add margin
        # clip logits to prevent zero division when backward
        theta = tf.acos(K.clip(logits, -1.0 + K.epsilon(), 1.0 - K.epsilon()))
        target_logits = tf.cos(theta + self.m)
        # sin = tf.sqrt(1 - logits**2)
        # cos_m = tf.cos(logits)
        # sin_m = tf.sin(logits)
        # target_logits = logits * cos_m - sin * sin_m
        #
        logits = logits * (1 - y) + target_logits * y
        # feature re-scale
        logits *= self.s
        out = tf.nn.softmax(logits)

        return out 
開發者ID:4uiiurz1,項目名稱:keras-arcface,代碼行數:26,代碼來源:metrics.py

示例5: ExactQabArcCos

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def ExactQabArcCos(self, var_aa, corr_ab):
    """Exact integration result from Cho & Saul (2009).

    Specifically:
      qaa = 0.5*qaa
      qab = (qaa/2*pi)*(sin angle + (pi-angle)*cos angle),

      where cos angle = corr_ab.

    Args:
      var_aa: 1d tensor of variance grid points.
      corr_ab: 1d tensor of correlation grid points.
    Returns:
      qab_exact: tensor, exact covariance matrix.
    """
    angle = tf.acos(corr_ab)
    jtheta = tf.sin(angle) + (np.pi - angle) * tf.cos(angle)

    term1 = tf.tile(tf.expand_dims(var_aa, 1), [1, corr_ab.shape[0]])
    term2 = tf.tile(tf.expand_dims(jtheta, 0), [var_aa.shape[0], 1])
    qab_exact = (1 / (2 * np.pi)) * term1 * term2

    return qab_exact 
開發者ID:brain-research,項目名稱:nngp,代碼行數:25,代碼來源:nngp_test.py

示例6: arcface_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def arcface_loss(x, normx_cos, labels, m1, m2, m3, s):
    norm_x = tf.norm(x, axis=1, keepdims=True)
    cos_theta = normx_cos / norm_x
    theta = tf.acos(cos_theta)
    mask = tf.one_hot(labels, depth=normx_cos.shape[-1])
    zeros = tf.zeros_like(mask)
    cond = tf.where(tf.greater(theta * m1 + m3, math.pi), zeros, mask)
    cond = tf.cast(cond, dtype=tf.bool)
    m1_theta_plus_m3 = tf.where(cond, theta * m1 + m3, theta)
    cos_m1_theta_plus_m3 = tf.cos(m1_theta_plus_m3)
    prelogits = tf.where(cond, cos_m1_theta_plus_m3 - m2, cos_m1_theta_plus_m3) * s

    cce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)  # do softmax
    loss = cce(labels, prelogits)

    return loss 
開發者ID:Fei-Wang,項目名稱:insightface,代碼行數:18,代碼來源:loss.py

示例7: test_forward_unary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def test_forward_unary():
    def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32):
        """test unary operators"""
        np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype)
        tf.reset_default_graph()
        with tf.Graph().as_default():
            in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data")
            out = op(in_data)
            compare_tf_with_tvm([np_data], ['in_data:0'], out.name)

    _test_forward_unary(tf.acos, -1, 1)
    _test_forward_unary(tf.asin, -1, 1)
    _test_forward_unary(tf.atanh, -1, 1)
    _test_forward_unary(tf.sinh)
    _test_forward_unary(tf.cosh)
    _test_forward_unary(tf.acosh)
    _test_forward_unary(tf.asinh)
    _test_forward_unary(tf.atan)
    _test_forward_unary(tf.sin)
    _test_forward_unary(tf.cos)
    _test_forward_unary(tf.tan)
    _test_forward_unary(tf.tanh)
    _test_forward_unary(tf.erf)
    _test_forward_unary(tf.log)
    _test_forward_unary(tf.log1p) 
開發者ID:apache,項目名稱:incubator-tvm,代碼行數:27,代碼來源:test_forward.py

示例8: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def call(self, inputs, mask=None):
        # Import graph tensors
        # scalar_features = (samples, max_atoms, atom_feat)
        # vector_features = (samples, max_atoms, coor_dims, atom_feat)
        scalar_features, vector_features = inputs

        # Get parameters
        coor_dims = int(vector_features.shape[2])
        atom_feat = int(vector_features.shape[-1])

        # Integrate over atom axis
        if self.pooling == "sum":
            scalar_features = tf.reduce_sum(scalar_features, axis=1)
            vector_features = tf.reduce_sum(vector_features, axis=1)

        elif self.pooling == "max":
            scalar_features = tf.reduce_max(scalar_features, axis=1)

            vector_features = tf.transpose(vector_features, perm=[0, 2, 3, 1])
            size = tf.sqrt(tf.reduce_sum(tf.square(vector_features), axis=1))
            idx = tf.reshape(tf.argmax(size, axis=-1, output_type=tf.int32), [-1, 1, atom_feat, 1])
            idx = tf.tile(idx, [1, coor_dims, 1, 1])
            vector_features = tf.reshape(tf.batch_gather(vector_features, idx), [-1, coor_dims, atom_feat])

        # Activation
        scalar_features = self.activation(scalar_features)
        vector_features = self.activation(vector_features)

        if self.system == "spherical":
            x, y, z = tf.unstack(vector_features, axis=1)
            r = tf.sqrt(tf.square(x) + tf.square(y) + tf.square(z))
            t = tf.acos(tf.divide(z, r + tf.cast(tf.equal(r, 0), dtype=float)))
            p = tf.atan(tf.divide(y, x + tf.cast(tf.equal(x, 0), dtype=float)))
            vector_features = tf.stack([r, t, p], axis=1)

        return [scalar_features, vector_features] 
開發者ID:blackmints,項目名稱:3DGCN,代碼行數:38,代碼來源:layer.py

示例9: arcface_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def arcface_loss(self, labels, x, normx_cos, m1=1.0, m2=0.2, m3=0.3, s=64.0):
		norm_x = tf.norm(x, axis=1, keepdims=True)
		cos_theta = normx_cos / norm_x
		theta = tf.acos(cos_theta)
		mask = tf.one_hot(labels, depth=normx_cos.shape[-1])
		zeros = tf.zeros_like(mask)
		cond = tf.where(tf.greater(theta * m1 + m3, math.pi), zeros, mask)
		cond = tf.cast(cond, dtype=tf.bool)
		m1_theta_plus_m3 = tf.where(cond, theta * m1 + m3, theta)
		cos_m1_theta_plus_m3 = tf.cos(m1_theta_plus_m3)
		prelogits = tf.where(cond, cos_m1_theta_plus_m3 - m2, cos_m1_theta_plus_m3) * s

		loss = self.sparse(mask, prelogits)

		return loss, prelogits 
開發者ID:aangfanboy,項目名稱:TripletLossFace,代碼行數:17,代碼來源:main_model_engine.py

示例10: cartesian_to_spherical_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def cartesian_to_spherical_coordinates(point_cartesian, eps=None, name=None):
  """Function to transform Cartesian coordinates to spherical coordinates.

  This function assumes a right handed coordinate system with `z` pointing up.
  When `x` and `y` are both `0`, the function outputs `0` for `phi`. Note that
  the function is not smooth when `x = y = 0`.

  Note:
    In the following, A1 to An are optional batch dimensions.

  Args:
    point_cartesian: A tensor of shape `[A1, ..., An, 3]`. In the last
      dimension, the data follows the `x`, `y`, `z` order.
    eps: A small `float`, to be added to the denominator. If left as `None`,
      its value is automatically selected using `point_cartesian.dtype`.
    name: A name for this op. Defaults to `cartesian_to_spherical_coordinates`.

  Returns:
    A tensor of shape `[A1, ..., An, 3]`. The last dimensions contains
    (`r`,`theta`,`phi`), where `r` is the sphere radius, `theta` is the polar
    angle and `phi` is the azimuthal angle.
  """
  with tf.compat.v1.name_scope(name, "cartesian_to_spherical_coordinates",
                               [point_cartesian]):
    point_cartesian = tf.convert_to_tensor(value=point_cartesian)

    shape.check_static(
        tensor=point_cartesian,
        tensor_name="point_cartesian",
        has_dim_equals=(-1, 3))

    x, y, z = tf.unstack(point_cartesian, axis=-1)
    radius = tf.norm(tensor=point_cartesian, axis=-1)
    theta = tf.acos(safe_ops.safe_unsigned_div(z, radius, eps))
    phi = tf.atan2(y, x)
    return tf.stack((radius, theta, phi), axis=-1) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:38,代碼來源:math_helpers.py

示例11: square_to_spherical_coordinates

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def square_to_spherical_coordinates(point_2d, name=None):
  """Maps points from a unit square to a unit sphere.

  Note:
    In the following, A1 to An are optional batch dimensions.

  Args:
    point_2d: A tensor of shape `[A1, ..., An, 2]` with values in [0,1].
    name: A name for this op. Defaults to
      "math_square_to_spherical_coordinates".

  Returns:
    A tensor of shape `[A1, ..., An, 2]` with [..., 0] having values in
    [0.0, pi] and [..., 1] with values in [0.0, 2pi].

  Raises:
    ValueError: if the shape of `point_2d`  is not supported.
    InvalidArgumentError: if at least an element of `point_2d` is outside of
    [0,1].

  """
  with tf.compat.v1.name_scope(name, "math_square_to_spherical_coordinates",
                               [point_2d]):
    point_2d = tf.convert_to_tensor(value=point_2d)

    shape.check_static(
        tensor=point_2d, tensor_name="point_2d", has_dim_equals=(-1, 2))
    point_2d = asserts.assert_all_in_range(
        point_2d, 0.0, 1.0, open_bounds=False)

    x, y = tf.unstack(point_2d, axis=-1)
    theta = 2.0 * tf.acos(tf.sqrt(1.0 - x))
    phi = 2.0 * np.pi * y
    return tf.stack((tf.ones_like(theta), theta, phi), axis=-1)


# API contains all public functions and classes. 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:39,代碼來源:math_helpers.py

示例12: test_safe_shrink_exception_not_raised

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def test_safe_shrink_exception_not_raised(self, dtype):
    """Checks whether safe shrinking makes tensor safe for tf.acos(x)."""
    tensor = tf.convert_to_tensor(value=_pick_random_vector(), dtype=dtype)
    tensor = tensor * tensor
    norm_tensor = tensor / tf.reduce_max(
        input_tensor=tensor, axis=-1, keepdims=True)
    eps = asserts.select_eps_for_addition(dtype)
    norm_tensor += eps

    safe_tensor = safe_ops.safe_shrink(norm_tensor, -1.0, 1.0)
    self.assert_exception_is_not_raised(tf.acos, shapes=[], x=safe_tensor) 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:13,代碼來源:safe_ops_test.py

示例13: test_Acos

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def test_Acos(self):
        t = tf.acos(self.random(4, 3))
        self.check(t) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:5,代碼來源:ops.py

示例14: to_degrees

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def to_degrees(log_quaternion_loss):
  """Converts a log quaternion distance to an angle.

  Args:
    log_quaternion_loss: The log quaternion distance between two
      unit quaternions (or a batch of pairs of quaternions).

  Returns:
    The angle in degrees of the implied angle-axis representation.
  """
  return tf.acos(-(tf.exp(log_quaternion_loss) - 1)) * 2 * 180 / math.pi 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:13,代碼來源:pixelda_eval.py

示例15: tf_quaternion_to_angle

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import acos [as 別名]
def tf_quaternion_to_angle(q):
    return tf.acos(q[3]) * 2.0


#  From frustum pointnets 
開發者ID:grossjohannes,項目名稱:AlignNet-3D,代碼行數:7,代碼來源:tp8.py


注:本文中的tensorflow.acos方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。