當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.__version__方法代碼示例

本文整理匯總了Python中tensorflow.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.__version__方法的具體用法?Python tensorflow.__version__怎麽用?Python tensorflow.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.__version__方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setupTF

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def setupTF(self):
        """ Initialize TensorFlow """
        print('Python: ' + sys.version)
        print('Tensorflow: ' + tf.__version__)
        sess = tf.Session()  # Tensorflow session
        saver = tf.train.Saver(max_to_keep=3)  # Saver saves model to file
        modelDir = '../model/'
        latestSnapshot = tf.train.latest_checkpoint(modelDir)  # Is there a saved model?
        # If model must be restored (for inference), there must be a snapshot
        if self.mustRestore and not latestSnapshot:
            raise Exception('No saved model found in: ' + modelDir)
        # Load saved model if available
        if latestSnapshot:
            print('Init with stored values from ' + latestSnapshot)
            saver.restore(sess, latestSnapshot)
        else:
            print('Init with new values')
            sess.run(tf.global_variables_initializer())

        return (sess, saver) 
開發者ID:sushant097,項目名稱:Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow,代碼行數:22,代碼來源:Model.py

示例2: reset_seeds

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def reset_seeds(reset_graph_with_backend=None, verbose=1):
    if reset_graph_with_backend is not None:
        K = reset_graph_with_backend
        K.clear_session()
        tf.compat.v1.reset_default_graph()
        if verbose:
            print("KERAS AND TENSORFLOW GRAPHS RESET")

    np.random.seed(1)
    random.seed(2)
    if tf.__version__[0] == '2':
        tf.random.set_seed(3)
    else:
        tf.set_random_seed(3)
    if verbose:
        print("RANDOM SEEDS RESET") 
開發者ID:OverLordGoldDragon,項目名稱:keras-adamw,代碼行數:18,代碼來源:utils.py

示例3: keras_should_run_eagerly

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def keras_should_run_eagerly(request):
    """Fixture to run in graph and two eager modes.

    The modes are:
    - Graph mode
    - TensorFlow eager and Keras eager
    - TensorFlow eager and Keras not eager

    The `tf.context` sets graph/eager mode for TensorFlow. The yield is True if Keras
    should run eagerly.
    """

    if request.param == "graph":
        if version.parse(tf.__version__) >= version.parse("2"):
            pytest.skip("Skipping graph mode for TensorFlow 2+.")

        with context.graph_mode():
            yield
    else:
        with context.eager_mode():
            yield request.param == "tf_keras_eager" 
開發者ID:larq,項目名稱:larq,代碼行數:23,代碼來源:conftest.py

示例4: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def main(_):

	print(FLAGS)
	print(tf.__version__, "==tensorflow version==")

	init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint)
	checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output)
	export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir)

	print(init_checkpoint, checkpoint_dir, export_dir)

	export.export_model(FLAGS,
						init_checkpoint,
						checkpoint_dir,
						export_dir,
						input_target=FLAGS.input_target) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:export_api.py

示例5: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def main(_):

	print(FLAGS)
	print(tf.__version__, "==tensorflow version==")

	init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint)
	checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output)
	export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir)

	print(init_checkpoint, checkpoint_dir, export_dir)

	export_model.export_model(FLAGS,
						init_checkpoint,
						checkpoint_dir,
						export_dir,
						input_target=FLAGS.input_target) 
開發者ID:yyht,項目名稱:BERT,代碼行數:18,代碼來源:export_api.py

示例6: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def main(_):

	print(FLAGS)
	print(tf.__version__, "==tensorflow version==")

	init_checkpoint = os.path.join(FLAGS.buckets, FLAGS.init_checkpoint)
	checkpoint_dir = os.path.join(FLAGS.buckets, FLAGS.model_output)
	export_dir = os.path.join(FLAGS.buckets, FLAGS.export_dir, "sample_sequence")

	print(init_checkpoint, checkpoint_dir, export_dir)

	export.export_model(FLAGS,
						init_checkpoint,
						checkpoint_dir,
						export_dir,
						input_target=FLAGS.input_target,
						predict_type='sample_sequence') 
開發者ID:yyht,項目名稱:BERT,代碼行數:19,代碼來源:export_api.py

示例7: setup

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def setup(tf, order=None):
    """
    Sets up global variables (currently only the tensorflow version) to adapt to peculiarities of
    different tensorflow versions. This function should only be called before :py:class:`Model`
    creation, not for evaluation. Therefore, the tensorflow module *tf* must be passed:

    .. code-block:: python

       import tensorflow as tf
       import tfdeploy as td

       td.setup(tf)

       # ...

    Also, when *order* is not *None*, it is forwarded to :py:func:`optimize` for convenience.
    """
    global _tf_version_string, _tf_version
    _tf_version_string = tf.__version__
    _tf_version = _parse_tf_version(_tf_version_string)

    if order is not None:
        optimize(order) 
開發者ID:riga,項目名稱:tfdeploy,代碼行數:25,代碼來源:tfdeploy.py

示例8: get_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def get_config():
  """Get model config."""
  config = None
  if FLAGS.model == "small":
    config = SmallConfig()
  elif FLAGS.model == "medium":
    config = MediumConfig()
  elif FLAGS.model == "large":
    config = LargeConfig()
  elif FLAGS.model == "test":
    config = TestConfig()
  else:
    raise ValueError("Invalid model: %s", FLAGS.model)
  if FLAGS.rnn_mode:
    config.rnn_mode = FLAGS.rnn_mode
  if FLAGS.num_gpus != 1 or tf.__version__ < "1.3.0" :
    config.rnn_mode = BASIC
  return config 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:20,代碼來源:ptb_word_lm.py

示例9: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def __call__(self):
        x_batch = self.model.make_input_placeholder()
        y_batch = self.model.make_label_placeholder()

        if LooseVersion(tf.__version__) < LooseVersion('1.0.0'):
            raise NotImplementedError()

        predictions = self.model.get_probs(x_batch)
        correct = tf.equal(tf.argmax(y_batch, axis=-1),
                           tf.argmax(predictions, axis=-1))

        return (x_batch, y_batch), (correct,) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:14,代碼來源:evaluation.py

示例10: reduce_function

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def reduce_function(op_func, input_tensor, axis=None, keepdims=None,
                    name=None, reduction_indices=None):
    """
    Handler function for Tensorflow depreciation of keep_dims for tf 1.8
    and above, but tf 1.4 requires keep_dims
    :param op_func: expects the function to handle eg: tf.reduce_sum.
    :param input_tensor: The tensor to reduce. Should have numeric type.
    :param axis: The dimensions to reduce. If None (the default),
            reduces all dimensions. Must be in the range
            [-rank(input_tensor), rank(input_tensor)).
    :param keepdims: If true, retains reduced dimensions with length 1.
    :param name: A name for the operation (optional).
    :param reduction_indices: The old (deprecated) name for axis.
    :param keep_dims: Deprecated alias for keepdims.
    :return: outputs same value as op_func.
    """

    if LooseVersion(tf.__version__) < LooseVersion('1.8.0'):
        warning = "Running on tensorflow version " + \
            LooseVersion(tf.__version__).vstring + \
            ". Support for this version in CleverHans is deprecated " + \
            "and may be removed on or after 2019-01-26"
        warnings.warn(warning)
        out = op_func(input_tensor, axis=axis,
                      keep_dims=keepdims, name=name,
                      reduction_indices=reduction_indices)
    else:
        out = op_func(input_tensor, axis=axis,
                      keepdims=keepdims, name=name,
                      reduction_indices=reduction_indices)
    return out 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:33,代碼來源:compat.py

示例11: softmax_cross_entropy_with_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def softmax_cross_entropy_with_logits(sentinel=None,
                                      labels=None,
                                      logits=None,
                                      dim=-1):
    """
    Wrapper around tf.nn.softmax_cross_entropy_with_logits_v2 to handle
    deprecated warning
    """
    # Make sure that all arguments were passed as named arguments.
    if sentinel is not None:
        raise ValueError("Only call `%s` with "
                         "named arguments (labels=..., logits=..., ...)"
                         % name)
    if labels is None or logits is None:
        raise ValueError("Both labels and logits must be provided.")

    try:
        labels = tf.stop_gradient(labels)
        loss = tf.nn.softmax_cross_entropy_with_logits_v2(
            labels=labels, logits=logits, dim=dim)
    except AttributeError:
        warning = "Running on tensorflow version " + \
            LooseVersion(tf.__version__).vstring + \
            ". Support for this version in CleverHans is deprecated " + \
            "and may be removed on or after 2019-01-26"
        warnings.warn(warning)
        loss = tf.nn.softmax_cross_entropy_with_logits(
            labels=labels, logits=logits, dim=dim)

    return loss 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:32,代碼來源:compat.py

示例12: tf_later_than

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def tf_later_than(v):
    return LooseVersion(tf.__version__) > LooseVersion(v) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:4,代碼來源:version_utils.py

示例13: tf_equal_to

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def tf_equal_to(v):
   return tf.__version__ == v 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:4,代碼來源:version_utils.py

示例14: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def main(unused_argv):
  logging.set_verbosity(tf.logging.INFO)
  print("tensorflow version: %s" % tf.__version__)
  evaluate() 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:6,代碼來源:eval.py

示例15: http_get

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import __version__ [as 別名]
def http_get(url, temp_file, proxies=None, resume_size=0, user_agent=None):
    ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
    if is_torch_available():
        ua += "; torch/{}".format(torch.__version__)
    if is_tf_available():
        ua += "; tensorflow/{}".format(tf.__version__)
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    headers = {"user-agent": ua}
    if resume_size > 0:
        headers["Range"] = "bytes=%d-" % (resume_size,)
    response = requests.get(url, stream=True, proxies=proxies, headers=headers)
    if response.status_code == 416:  # Range not satisfiable
        return
    content_length = response.headers.get("Content-Length")
    total = resume_size + int(content_length) if content_length is not None else None
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
        disable=bool(logger.getEffectiveLevel() == logging.NOTSET),
    )
    for chunk in response.iter_content(chunk_size=1024):
        if chunk:  # filter out keep-alive new chunks
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close() 
開發者ID:plkmo,項目名稱:BERT-Relation-Extraction,代碼行數:33,代碼來源:file_utils.py


注:本文中的tensorflow.__version__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。