本文整理匯總了Python中tensorflow.WholeFileReader方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.WholeFileReader方法的具體用法?Python tensorflow.WholeFileReader怎麽用?Python tensorflow.WholeFileReader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.WholeFileReader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read_my_file_format
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def read_my_file_format(filename_queue):
image_reader = tf.WholeFileReader()
_, image_data = image_reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(image_data, tf.uint8)
# The first bytes represent the label, which we convert from uint8->float32.
labels_ = tf.cast(tf.slice(record_bytes, [0], [LSPGlobals.TotalLabels]), tf.float32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record_bytes, [LSPGlobals.TotalLabels], [LSPGlobals.TotalImageBytes]),
[FLAGS.input_size, FLAGS.input_size, FLAGS.input_depth])
# Convert from [depth, height, width] to [height, width, depth].
#processed_example = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
return depth_major, labels_
示例2: read_word_freq
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def read_word_freq(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
lines = tf.string_split([value], "\n")
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
sess.run([lines])
lines_eval = lines.eval()
result = []
for line in lines_eval.values:
s = line.split()
result.append((s[0], int(s[1])))
coord.request_stop()
coord.join(threads)
return result
示例3: testInfiniteEpochs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def testInfiniteEpochs(self):
with self.test_session() as sess:
reader = tf.WholeFileReader("test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
enqueue = queue.enqueue_many([self._filenames])
key, value = reader.read(queue)
enqueue.run()
self._ExpectRead(sess, key, value, 0)
self._ExpectRead(sess, key, value, 1)
enqueue.run()
self._ExpectRead(sess, key, value, 2)
self._ExpectRead(sess, key, value, 0)
self._ExpectRead(sess, key, value, 1)
enqueue.run()
self._ExpectRead(sess, key, value, 2)
self._ExpectRead(sess, key, value, 0)
示例4: _read_flow
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def _read_flow(filenames, num_epochs=None):
"""Given a list of filenames, constructs a reader op for ground truth flow files."""
filename_queue = tf.train.string_input_producer(filenames,
shuffle=False, capacity=len(filenames), num_epochs=num_epochs)
reader = tf.WholeFileReader()
_, value = reader.read(filename_queue)
value = tf.reshape(value, [1])
value_width = tf.substr(value, 4, 4)
value_height = tf.substr(value, 8, 4)
width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), [])
height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), [])
value_flow = tf.substr(value, 12, 8 * width * height)
flow = tf.decode_raw(value_flow, out_type=tf.float32)
flow = tf.reshape(flow, [height, width, 2])
mask = tf.to_float(tf.logical_and(flow[:, :, 0] < 1e9, flow[:, :, 1] < 1e9))
mask = tf.reshape(mask, [height, width, 1])
return flow, mask
示例5: _read_flow
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def _read_flow(filenames, num_epochs=None):
"""Given a list of filenames, constructs a reader op for ground truth flow files."""
filename_queue = tf.train.string_input_producer(filenames,
shuffle=False, capacity=len(filenames), num_epochs=num_epochs)
reader = tf.WholeFileReader()
_, value = reader.read(filename_queue)
value = tf.reshape(value, [1])
value_width = tf.substr(value, 4, 4)
value_height = tf.substr(value, 8, 4)
width = tf.reshape(tf.decode_raw(value_width, out_type=tf.int32), [])
height = tf.reshape(tf.decode_raw(value_height, out_type=tf.int32), [])
value_flow = tf.substr(value, 12, 8 * 436 * 1024)
flow = tf.decode_raw(value_flow, out_type=tf.float32)
return tf.reshape(flow, [436, 1024, 2])
示例6: _read_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def _read_input(self, filename_queue):
class DataRecord(object):
pass
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
record = DataRecord()
decoded_image = tf.image.decode_jpeg(value,
channels=3) # Assumption:Color images are read and are to be generated
# decoded_image_4d = tf.expand_dims(decoded_image, 0)
# resized_image = tf.image.resize_bilinear(decoded_image_4d, [self.target_image_size, self.target_image_size])
# record.input_image = tf.squeeze(resized_image, squeeze_dims=[0])
cropped_image = tf.cast(
tf.image.crop_to_bounding_box(decoded_image, 55, 35, self.crop_image_size, self.crop_image_size),
tf.float32)
decoded_image_4d = tf.expand_dims(cropped_image, 0)
resized_image = tf.image.resize_bilinear(decoded_image_4d, [self.resized_image_size, self.resized_image_size])
record.input_image = tf.squeeze(resized_image, squeeze_dims=[0])
return record
示例7: load_images_from_idlist
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_images_from_idlist(idlist, batch_size, num_preprocess_threads, min_queue_examples, shift_param = -128, rescale_param = 128, resized_image_size = [128, 128], shuffle = True):
# Make a queue of file names including all the image files in the relative
# image directory.
filename_queue = tf.train.string_input_producer(idlist,
shuffle=shuffle)
# Read an entire image file. If the images
# are too large they could be split in advance to smaller files or use the Fixed
# reader to split up the file.
image_reader = tf.WholeFileReader()
# Read a whole file from the queue, the first returned value in the tuple is the
# filename which we are ignoring.
_, image_file = image_reader.read(filename_queue)
return _load_images(image_file, batch_size, num_preprocess_threads, min_queue_examples, shift_param, rescale_param, resized_image_size, shuffle)
開發者ID:thomasneff,項目名稱:Generative-Adversarial-Network-based-Synthesis-for-Supervised-Medical-Image-Segmentation,代碼行數:18,代碼來源:load_folder_images.py
示例8: load_images
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_images(folder_path_match, batch_size, num_preprocess_threads, min_queue_examples, shift_param = -128, rescale_param = 128, resized_image_size = [128, 128], shuffle = True):
# Make a queue of file names including all the image files in the relative
# image directory.
filename_queue = tf.train.string_input_producer(
tf.train.match_filenames_once(folder_path_match),
shuffle=shuffle)
# Read an entire image file. If the images
# are too large they could be split in advance to smaller files or use the Fixed
# reader to split up the file.
image_reader = tf.WholeFileReader()
# Read a whole file from the queue, the first returned value in the tuple is the
# filename which we are ignoring.
_, image_file = image_reader.read(filename_queue)
return _load_images(image_file, batch_size, num_preprocess_threads, min_queue_examples, shift_param, rescale_param, resized_image_size, shuffle)
開發者ID:thomasneff,項目名稱:Generative-Adversarial-Network-based-Synthesis-for-Supervised-Medical-Image-Segmentation,代碼行數:19,代碼來源:load_folder_images.py
示例9: get_input_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def get_input_image(filename_queue, output_size, image_size, c_dim):
# Read a record, getting filenames from the filename_queue.
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
image = tf.image.decode_image(value, channels=c_dim)
image = tf.cast(image, tf.float32)/255.
image_shape = tf.shape(image)
image_height, image_width = image_shape[0], image_shape[1]
offset_height = tf.cast((image_height - image_size)/2, tf.int32)
offset_width = tf.cast((image_width - image_size)/2, tf.int32)
image = tf.image.crop_to_bounding_box(
image, offset_height, offset_width, image_size, image_size)
image = tf.image.resize_images(image, [output_size, output_size])
image.set_shape([output_size, output_size, c_dim])
return image
示例10: load_batch_demosaic
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_batch_demosaic(BURST_LENGTH, dataset_dir, batch_size=32, height=64, width=64, degamma=1., to_shift=1., upscale=1, jitter=1):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
mosaic = None
while mosaic == None:
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
mosaic, demosaic, shift = make_stack_demosaic((tf.cast(image[0], tf.float32) / 255.)**degamma,
height, width, 128, BURST_LENGTH, to_shift, upscale, jitter)
# Batch it up.
mosaic, demosaic, shift = tf.train.shuffle_batch(
[mosaic, demosaic, shift],
batch_size=batch_size,
num_threads=2,
capacity=500 + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=100)
return mosaic, demosaic, shift
示例11: load_batch_hqjitter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_batch_hqjitter(dataset_dir, patches_per_img=32, min_queue=8, BURST_LENGTH=1, batch_size=32,
repeats=1, height=64, width=64, degamma=1.,
to_shift=1., upscale=1, jitter=1, smalljitter=1):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
patches = make_stack_hqjitter((tf.cast(image[0], tf.float32) / 255.)**degamma,
height, width, patches_per_img, BURST_LENGTH, to_shift, upscale, jitter)
unique = batch_size//repeats
# Batch it up.
patches = tf.train.shuffle_batch(
[patches],
batch_size=unique,
num_threads=2,
capacity=min_queue + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=min_queue)
print('PATCHES =================',patches.get_shape().as_list())
patches = make_batch_hqjitter(patches, BURST_LENGTH, batch_size, repeats, height, width, to_shift, upscale, jitter, smalljitter)
return patches
示例12: load_batch_noised
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_batch_noised(depth, dataset_dir, batch_size=32, height=64, width=64, degamma=1., sig_range=20.):
filenames = [os.path.join(dataset_dir, f) for f in gfile.ListDirectory(dataset_dir)]
filename_queue = tf.train.string_input_producer(filenames)
noised_stack = None
while noised_stack == None:
_, image_file = tf.WholeFileReader().read(filename_queue)
image = tf.image.decode_image(image_file)
noised_stack, denoised_stack, sig_stack = make_stack_noised((tf.cast(image[0], tf.float32) / 255.)**degamma, height, width, depth, sig_range)
# Batch it up.
noised, denoised, sig = tf.train.shuffle_batch(
[noised_stack, denoised_stack, sig_stack],
batch_size=batch_size,
num_threads=2,
capacity=1024 + 3 * batch_size,
enqueue_many=True,
min_after_dequeue=500)
return noised, denoised, sig
示例13: load_tensorflow_image
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def load_tensorflow_image(self, channel_label: str,
image_name: str) -> lt.LabeledTensor:
# All images will be cropped to this size.
crop_size = 1024
filename_op = tf.train.string_input_producer([self.data_path(image_name)])
wfr = tf.WholeFileReader()
_, encoded_png_op = wfr.read(filename_op)
image_op = tf.image.decode_png(
tf.reshape(encoded_png_op, shape=[]), channels=1, dtype=tf.uint16)
image_op = image_op[:crop_size, :crop_size, :]
image_op = tf.to_float(image_op) / np.iinfo(np.uint16).max
image_op = tf.reshape(image_op, [1, 1024, 1024, 1])
return lt.LabeledTensor(
image_op, ['batch', 'row', 'column', ('channel', [channel_label])])
示例14: setUp
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def setUp(self):
super(ShapeTest, self).setUp()
filename_op = tf.train.string_input_producer([
os.path.join(os.environ['TEST_SRCDIR'],
'isl/testdata/research_logo.jpg')
])
reader = tf.WholeFileReader()
_, encoded_image_op = reader.read(filename_op)
image_op = tf.image.decode_jpeg(encoded_image_op, channels=3)
self.correct_shape_op = tf.identity(image_op)
self.correct_shape_op.set_shape([250, 250, 3])
self.correct_lt = lt.LabeledTensor(self.correct_shape_op,
['x', 'y', 'color'])
self.incorrect_shape_op = tf.identity(image_op)
self.incorrect_shape_op.set_shape([50, 50, 3])
self.incorrect_lt = lt.LabeledTensor(self.incorrect_shape_op,
['x', 'y', 'color'])
self.okay_lt = tensorcheck.shape(self.correct_lt)
self.error_lt = tensorcheck.shape(self.incorrect_lt)
示例15: SingleFileReader
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import WholeFileReader [as 別名]
def SingleFileReader(filename, shape, rtype='tanh', ext='jpg'):
n, h, w, c = shape
if ext == 'jpg' or ext == 'jpeg':
decoder = tf.image.decode_jpeg
elif ext == 'png':
decoder = tf.image.decode_png
else:
raise ValueError('Unsupported file type: {:s}.'.format(ext) +
' (only *.png and *.jpg are supported')
filename_queue = tf.train.string_input_producer(filename, shuffle=False)
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
img = decoder(value, channels=c)
img = tf.image.crop_to_bounding_box(img, 0, 0, h, w)
img = tf.to_float(img)
if rtype == 'tanh':
img = tf.div(img, 127.5) - 1.
imgs = tf.train.batch(
[img],
batch_size=n,
capacity=1)
return imgs, key