本文整理匯總了Python中tensorflow.VariableScope方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.VariableScope方法的具體用法?Python tensorflow.VariableScope怎麽用?Python tensorflow.VariableScope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.VariableScope方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def build(self, hparams, is_training=True):
self._total_length = hparams.max_seq_len
if self._total_length != np.prod(self._level_lengths):
raise ValueError(
'The product of the HierarchicalLstmEncoder level lengths (%d) must '
'equal the padded input sequence length (%d).' % (
np.prod(self._level_lengths), self._total_length))
tf.logging.info('\nHierarchical Encoder:\n'
' input length: %d\n'
' level lengths: %s\n',
self._total_length,
self._level_lengths)
self._hierarchical_encoders = []
num_splits = np.prod(self._level_lengths)
for i, l in enumerate(self._level_lengths):
num_splits //= l
tf.logging.info('Level %d splits: %d', i, num_splits)
h_encoder = self._core_encoder_cls()
h_encoder.build(
hparams, is_training,
name_or_scope=tf.VariableScope(
tf.AUTO_REUSE, 'encoder/hierarchical_level_%d' % i))
self._hierarchical_encoders.append((num_splits, h_encoder))
示例2: test_define_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def test_define_model(self):
FLAGS.batch_size = 2
images_shape = [FLAGS.batch_size, 4, 4, 3]
images_np = np.zeros(shape=images_shape)
images = tf.constant(images_np, dtype=tf.float32)
labels = tf.one_hot([0] * FLAGS.batch_size, 2)
model = train._define_model(images, labels)
self.assertIsInstance(model, tfgan.StarGANModel)
self.assertShapeEqual(images_np, model.generated_data)
self.assertShapeEqual(images_np, model.reconstructed_data)
self.assertTrue(isinstance(model.discriminator_variables, list))
self.assertTrue(isinstance(model.generator_variables, list))
self.assertIsInstance(model.discriminator_scope, tf.VariableScope)
self.assertTrue(model.generator_scope, tf.VariableScope)
self.assertTrue(callable(model.discriminator_fn))
self.assertTrue(callable(model.generator_fn))
示例3: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def __init__(self, subnet, name=None, scope=None):
"""Create the Shared operator.
Use this as:
f = Shared(Cr(100, 3))
g = f | f | f
Ordinarily, you do not need to provide either a name or a scope.
Providing a name is useful if you want a well-defined namespace
for the variables (e.g., for saving a subnet).
Args:
subnet: Definition of the shared network.
name: Optional name for the shared context.
scope: Optional shared scope (must be a Scope, not a string).
Raises:
ValueError: Scope is not of type tf.Scope, name is not
of type string, or both scope and name are given together.
"""
if scope is not None and not isinstance(scope, tf.VariableScope):
raise ValueError("scope must be None or a VariableScope")
if name is not None and not isinstance(scope, str):
raise ValueError("name must be None or a string")
if scope is not None and name is not None:
raise ValueError("cannot provide both a name and a scope")
if name is None:
name = "Shared_%d" % Shared.shared_number
Shared.shared_number += 1
self.subnet = subnet
self.name = name
self.scope = scope
示例4: pair_vars_between_scope
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def pair_vars_between_scope(src, dst, src_vars=None, dst_vars=None):
def canonicalize_scope_name(s):
if isinstance(s, tf.VariableScope):
s = s.name
return s + "/"
def canonicalize_vars(vars, scope_path):
if vars is None:
vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
vd = dict()
prefix_len = len(scope_path)
for v in vars:
if v.name.startswith(scope_path):
vd[v.name[prefix_len:]] = v
return vd
src = canonicalize_scope_name(src)
dst = canonicalize_scope_name(dst)
src_vars = canonicalize_vars(src_vars, src)
dst_vars = canonicalize_vars(dst_vars, dst)
assert len(dst_vars) == len(src_vars) and all(k in dst_vars for k in src_vars), \
"variables mismatches"
pair_list = []
for k, src_v in src_vars.items():
pair_list.append((src_v, dst_vars[k])) # (src, dst)
return pair_list
示例5: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def __init__(self, input_type=None, output_type=None, name_or_scope=None):
"""Creates the layer.
Args:
input_type: A type.
output_type: A type.
name_or_scope: A string or variable scope. If a string, a new variable
scope will be created by calling
[`create_variable_scope`](#create_variable_scope), with defaults
inherited from the current variable scope. If no caching device is set,
it will be set to `lambda op: op.device`. This is because `tf.while` can
be very inefficient if the variables it uses are not cached locally.
"""
if name_or_scope is None: name_or_scope = type(self).__name__
if isinstance(name_or_scope, tf.VariableScope):
self._vscope = name_or_scope
name = str(self._vscope.name)
elif isinstance(name_or_scope, six.string_types):
self._vscope = create_variable_scope(name_or_scope)
name = name_or_scope
else:
raise TypeError('name_or_scope must be a tf.VariableScope or a string: '
'%s' % (name_or_scope,))
if self._vscope.caching_device is None:
self._vscope.set_caching_device(lambda op: op.device)
super(Layer, self).__init__(input_type, output_type, name)
if not hasattr(self, '_constructor_name'):
self._constructor_name = '__.%s' % self.__class__.__name__
if not hasattr(self, '_constructor_args'):
self._constructor_args = None
if not hasattr(self, '_constructor_kwargs'):
self._constructor_kwargs = None
示例6: _hierarchical_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VariableScope [as 別名]
def _hierarchical_decode(self, z, base_decode_fn):
"""Depth first decoding from `z`, passing final embeddings to base fn."""
batch_size = z.shape[0]
# Subtract 1 for the core decoder level.
num_levels = len(self._level_lengths) - 1
hparams = self.hparams
batch_size = hparams.batch_size
def recursive_decode(initial_input, path=None):
"""Recursive hierarchical decode function."""
path = path or []
level = len(path)
if level == num_levels:
with tf.variable_scope('core_decoder', reuse=tf.AUTO_REUSE):
return base_decode_fn(initial_input, path)
scope = tf.VariableScope(
tf.AUTO_REUSE, 'decoder/hierarchical_level_%d' % level)
num_steps = self._level_lengths[level]
with tf.variable_scope(scope):
state = lstm_utils.initial_cell_state_from_embedding(
self._hier_cells[level], initial_input, name='initial_state')
if level not in self._disable_autoregression:
# The initial input should be the same size as the tensors returned by
# next level.
if self._hierarchical_encoder:
input_size = self._hierarchical_encoder.level(0).output_depth
elif level == num_levels - 1:
input_size = sum(nest.flatten(self._core_decoder.state_size))
else:
input_size = sum(nest.flatten(self._hier_cells[level + 1].state_size))
next_input = tf.zeros([batch_size, input_size])
lower_level_embeddings = []
for i in range(num_steps):
if level in self._disable_autoregression:
next_input = tf.zeros([batch_size, 1])
else:
next_input = tf.concat([next_input, initial_input], axis=1)
with tf.variable_scope(scope):
output, state = self._hier_cells[level](next_input, state, scope)
next_input = recursive_decode(output, path + [i])
lower_level_embeddings.append(next_input)
if self._hierarchical_encoder:
# Return the encoding of the outputs using the appropriate level of the
# hierarchical encoder.
enc_level = num_levels - level
return self._hierarchical_encoder.level(enc_level).encode(
sequence=tf.stack(lower_level_embeddings, axis=1),
sequence_length=tf.fill([batch_size], num_steps))
else:
# Return the final state.
return tf.concat(nest.flatten(state), axis=-1)
return recursive_decode(z)